Вакуумный насос это: Назначение вакуумных насосов. Отличие от компрессоров.

Назначение вакуумных насосов. Отличие от компрессоров.

Сегодняшняя статья – первая часть большого материала по вакуумным насосам, который мы подготовили в справочных целях. В ней описано общее назначение, принцип действия. Также мы подробно отвечаем на вопрос, чем вакуумные насосы отличаются от своих родственников — воздушных компрессоров.  

 

Введение

Оборудование, используемое для создания вакуума, аналогично воздушным компрессорам. Его даже можно использовать для получения сжатого воздуха или для получения вакуума в зависимости от способа установки.

Вакуумные насосы в целом можно рассматривать как компрессоры, которые уменьшают, а не увеличивают атмосферное давление.

Напомним, что суть сжатия воздуха (повышения давления) состоит в увеличении числа  столкновений молекул в единицу времени. Напротив, суть вакуума заключается в уменьшении числа таких столкновений в единицу времени.

Вакуум в камере создается путем физического удаления молекул воздуха и вывода их из системы. Удаление воздуха из замкнутой системы постепенно уменьшает плотность воздуха в ограниченном пространстве, что вызывает падение абсолютного давления оставшегося газа. Вакуум создан.

Изменение давления, создаваемое в результате работы вакуумного насоса, не может превышать атмосферного давления. Номинальное атмосферное давление равно 760 мм ртутного столба на уровне моря при температуре 15 °С.  Важно знать его значение на Вашем рабочем месте. Например, вакуумный насос, который создает разрежение в 730 мм ртутного столба, не сможет обеспечить такое разрежение, если атмосферное давление данной местности составляет 700 мм ртутного столба (например, в Чите).

Пропорция удаляемого воздуха при работе вакуумного насоса будет одинаковой при любом атмосферном давлении. Это значит, что в Чите указанный насос будет создавать разрежение, равное 730 * 700/760 = 672 мм.рт.столба. 

 

Вакуумные насосы: принцип действия и отличие от компрессоров. 

Вакуумный насос преобразует механическую энергию, подаваемую на вращаемый вал, в пневматическую энергию путем откачивания воздуха, находящегося внутри системы.  Уровень внутреннего давления таким образом, становится ниже, чем у наружного атмосферного. Объем полезной работы, совершенной вакуумным насосом зависит от кол-ва откачанного газа и разности созданных давлений.  

Механические вакуумные насосы используют тот же принцип работы, что и воздушные компрессоры, за исключением того, вакуумный насос всасывает воздух из замкнутого объема и удаляется наружу.

Основное различие между вакуумным насосом и компрессором в том, что давление воздуха на всасывающей линии всегда ниже атмосферного и становится исчезающее малым при высоких уровнях вакуума. 

Другие отличия между вакуумными насосами и компрессорами таковы:

— у вакуумных насосов разница между создаваемым и атмосферным давлением не может быть выше 760 мм ртутного столба (при абсолютном вакууме). У компрессоров создаваемое давление может составлять десятки и даже сотни атмосфер.

— масса воздуха, подаваемого в вакуумный насос на каждый такт впуска, а также абсолютное изменение давления, уменьшаются по мере увеличения уровня вакуума. У компрессора производительность и давление постоянны.

— при высоких уровнях вакуума значительно меньше воздуха проходит через насос. Таким образом, практически все тепло, выделяющееся в процессе работы насоса поглощается и рассеивается внутри самого насоса. У вакуумного насоса не возникает проблемы отвода тепла, как у компрессора.

 

Получение вакуума в несколько ступеней

Как и при сжатии воздуха, создание вакуума может быть достигнуто за одно прохождение воздуха через насосную камеру. Но для этого может понадобиться и несколько этапов. Один вакуумный насос может использоваться в качестве первой ступени и уменьшать давление в камере, например, на 650 мм.рт. столба. Разряженный воздух подается в другой вакуумный насос, создающий более глубокий вакуум, например, в мембранный вакуумный насос. Тот уже будет доводить уменьшаемое давление до 750 мм.рт. столба. Зачем это нужно? Например, это может объясняться энергетической эффективностью, когда парная работа двух насосов разного типа приводит к меньшим энергозатратам, чем использование только одного насоса, создающего глубокий вакуум.

Продолжение следует…

 

Об авторе: Алексей Циммер, сооснователь инженерного каталога нагнетательного оборудования zenova.ru

 

P.S.

Каталог вакуумных насосов смотрите здесь

Принцип работы вакуумных насосов простыми словами

Общие сведения

Вакуумом (от лат. vacuum — пустота) называют состояние газа или пара при давлении ниже атмосферного.

Условно различают различные уровни вакуума:

  • Низкий — диапазон давления больше 100 Па
  • Среднее – диапазон давления больше 0,1 Па и меньше 100
  • Большое – диапазон давления от 10-5 Па до 0,1 Па
  • Сверхвысокое – давление больше 10-5 Па

При современном развитии оборудования, создать вакуум совсем несложно. Самый простой агрегат, способный создавать вакуум – это вакуумный насос.

Действие насоса всех видов основывается на одном принципе, а именно вытеснении. Оно лежит в основе работы всех насосов разных объемов и методах использования. Вытеснение подразумевает избавление от газа рабочего отсека. В ходе действия меняется давление, а газовые элементы движутся по правильной дороге. При современном развитии оборудования, создать вакуум совсем несложно. Самый простой агрегат, способный создавать вакуум – это вакуумный насос.

Есть типы насосов, используемые в повседневной жизни (например, удобное хранение одежды либо продление годности пищи). Найти надежное устройство для создания пространства с разряженным воздухом поможет знание принципа работы оборудования.

Эффективность насоса имеет прямую зависимость от качества действия вытеснительного принципа. На объем вакуума, который может быть создан в атмосфере замкнутого типа, влияет герметичность рабочего отсека. Она обеспечивается благодаря золотникам, рабочему колесу и пластине. Последние два элемента можно найти на внешней части вакуумного насоса.

Факторы, которые говорят о правильной работе вакуумного насоса

Есть два необходимых действия, которые должен выполнять абсолютно любой вакуумный насос. Он должен:

  1. Создавать вакуум заданной глубины во время откачивания газового элемента из необходимого пространства без перебоев;
  2. Выполнить первый пункт за четко определенное время.

При невыполнении какого-либо пункта возникнет необходимость подключения дополнительного насоса. Например, если за заданный отрезок времени не было обеспечено давление нужного объема, подключают насос форвакуумного типа. Он позволяет в нужном количестве снизить давление для обеспечения рабочей атмосферы. Этот принцип схож с последовательным подключением. Если не была получена нужная откачиваемая скорость, требуется подключение насоса, способного с большой скоростью создать нужный вакуум. Этот тип работы сравним с подключением параллельного типа.

На размер глубины, которую создал вакуум, влияет герметичность рабочей атмосферы. Ее обеспечивают насосные компоненты, а точнее масло специального типа. Масло позволяет не только сделать зазоры плотными, но и плотно их закрыть. Насос, который способен создавать вакуум и имеет такую конструкцию, считают масляным. Сухой насос же тот, что обеспечивает работу без масла. Более распространены в использовании именно сухие насосы, потому что они не требуют особого ухода.

Принцип работы вакуумного насоса бывает разным, так как каждый вид работает по-своему. Подробнее о видах вы можете прочитать про Виды вакуумных насосов.



Рассмотрим три самых популярных вида вакуумных насосов, используемых на производстве.

Пластинчато-роторные вакуумные насосы

Их также называют масляными. Разберем информацию об устройстве и принципе работы вакуумного насоса пластинчато-роторного типа.

Эти насосы вакуумного типа выглядят как старательно отшлифованный цилиндр, внутри которого располагается ротор. Зазор боковой части бывает разного размера, потому что ось внутренней его части и ротора не соприкасаются.

У ротора есть особенные двигательные пластинки. Благодаря своим пружинам они прилегают к корпусу. Таким образом происходит разделение пустой атмосферы на части переменного объема. Во время двигательной активности газовый элемент создает в патрубке приема разрежение. В напорном же — давление избытка.

В состав пластинок входят антифрикционные компоненты либо особенные маловязкие масла, так как необходимо уменьшить трение пластины. Это делает возможным появление вакуума большой силы. Однако перекачиваемые элементы должны быть чистыми.

Мембранные вакуумные насосы

Гибкая мембрана — это главная часть принципа действия мембранно-поршневого насоса. Мембрана связывается с механизмом рычага. Ее создают из новейших композитных компонентов, которые выдерживают механику. Крайние части мембраны крепко присоединяются к корпусной части, а центральная изгибается под воздействием электрического и пневматического привода. Таким образом поочередно уменьшается и увеличивается внутренняя часть камеры.

Объем изменяется совместно с процессами получения и выхода новых газовых элементов или жидкообразных. Когда противофаза совмещает действия двух мембранных компонентов, происходит режим непрекращающейся перекачки. Еще один элемент насоса, а именно клапаны, определяют верное направление потоков и распределительные мотивы. У механизма нет элементов, которые могут вращаться или испытывать силу трения и контактировать с качаемым продуктом.

Достоинства мембранно-поршневых насосов:

  • Герметичность
  • Использование в сухого режима в течение долгого промежутка времени
  • Использование пневматического привода во взрывоопасной среде
  • Экономичность.

Винтовые вакуумные насосы

Насосы винтового типа, также как и все остальные, действуют с помощью принципа вытеснения. Однако в отличие от других устройств, оно происходит по винту, который выполняет работу вращения. У насосов есть: привод, 1-2 ротова в форме винта и статор нужной формы. Перекачиваемый компонент не возвращается назад, потому что детали изготовлены с огромной точностью — это гарантирует высококачественные показатели насоса. В итоге появляется давление избытка, в приемной части – вакуум.

Плюсы винтовых насосов:

  • Минимальный шум
  • Перекачивание компонентов благодаря механике
  • Равномерные траты

Важно выбрать вид насоса по требованиям вашего предприятия и сферы. Для этого лучше обратится за консультацией к специалистам.

Выводы

Эта статья содержит в себе описание принципов работы некоторых видов вакуумных насосов. Мы разобрали информацию о работе пластинчато-роторных, мембранных, и винтовых вакуумных насосов. Мы осветили тему альтернативных видов устройств и правильность при покупке насоса. Надеемся, что наша статья помогла вам разобраться в работе этих устройств и правильном подборе насоса именно для ваших задач.

Как работают вакуумные насосы?

Вакуумный насос представляет собой устройство, которое удаляет молекулы газа или частицы воздуха из герметичного объема для достижения разности давлений, создающей частичный вакуум. Вакуумные насосы разработаны с использованием различных технологий в зависимости от требований к давлению и области применения, которую они обслуживают. При настройке вакуумной насосной системы правильный подбор параметров имеет решающее значение для достижения оптимальной эффективности.

Как работает вакуумный насос?

Вакуум – пространство, лишенное материи, в котором давление газа внутри этого объема ниже атмосферного давления. Основная функция вакуумного насоса заключается в изменении давления в замкнутом пространстве для создания полного или частичного вакуума механическим или химическим способом. Давление всегда будет пытаться выровняться в соединенных областях, поскольку молекулы газа текут от высокого уровня к низкому, чтобы заполнить всю площадь этого объема. Следовательно, если ввести новое пространство низкого давления, газ будет естественным образом течь из области высокого давления в новую область низкого давления, пока они не будут иметь одинаковое давление. Обратите внимание, что этот вакуумный процесс создается не за счет «всасывания» газов, а за счет выталкивания молекул. Вакуумные насосы, по сути, перемещают молекулы газа из одной области в другую, создавая вакуум, меняя состояния высокого и низкого давления.

По мере того, как молекулы удаляются из вакуумного пространства, становится экспоненциально труднее удалить дополнительные, что увеличивает требуемую мощность вакуума. Диапазоны давления разделены на несколько групп:

  • Низкий/низкий вакуум: от 1000 до 1 мбар / от 760 до 0,75 торр
  • Тонкий/средний вакуум: от 1 до 10 -3 мбар / от 0,75 до 7,5 -3 Торр
  • Высокий вакуум: 10 -3 до 10 -7 мбар / 7,5 -3 до 7,5 -7 Торр
  • Сверхвысокий вакуум: от 10 -7 до 10 -11 мбар / 7,5 -7 от до 7,5 -11 Торр
  • Сверхвысокий вакуум: -11 мбар / -11 торр

Вакуумные насосы классифицируются по диапазону давления, в котором они могут работать, что помогает различать их возможности. Эти классификации следующие:

  • Первичные (форвакуумные) насосы, работающие в диапазонах низкого и низкого вакуумметрического давления.
  • Бустерные насосы

  • работают в диапазонах низкого и среднего давления.
  • Вторичные (высоковакуумные) насосы работают в диапазонах высокого, очень высокого и сверхвысокого вакуума.

В зависимости от требований к давлению и условий эксплуатации технологии вакуумных насосов считаются влажными или сухими. Мокрые насосы используют масло или воду для смазки и уплотнения, в то время как сухие насосы не имеют жидкости в пространстве между вращающимися механизмами или неподвижными частями, которые используются для изоляции и сжатия молекул газа. Без смазки сухие насосы имеют очень жесткие допуски для эффективной работы без износа. Давайте посмотрим на некоторые из методов, используемых в вакуумном насосе.

 

Улавливающие насосы

Улавливающие насосы, также называемые улавливающими насосами, не имеют движущихся частей и используются для приложений, требующих очень высокого вакуумного давления. Без движущихся частей улавливающие насосы могут создавать вакуумную среду двумя разными способами.  

  Крионасос (сухой, вторичный): давление 7,5 x 10 -10 Торр, скорость откачки 1200 – 4200 л/с криогеника для улавливания молекул газа. В крионасосах используется криогенная технология для замораживания или улавливания газа на очень холодной поверхности. Используя чрезвычайно низкие температуры, они эффективно втягивают молекулы внутрь, создавая вакуум.

Ионные насосы (сухие, вторичные): Давление 7,5 x 10 -12 Торр, скорость откачки 1000 л/с

метод захвата. Магнитное поле создает облако электроположительных ионов, которые осаждаются на титановом катоде. В этом процессе химически активные материалы объединяются с молекулами газа, втягивая их и создавая вакуум.

 

Перекачивающие насосы

Перекачивающие насосы могут работать двумя способами; Кинетическая энергия или положительное смещение. В отличие от улавливающих насосов, перекачивающие насосы выталкивают молекулы газа из пространства через систему. Общим для них является то, что все они используют метод механического проталкивания газа и воздуха через систему через различные системные интервалы. Обычно несколько перекачивающих насосов используются параллельно для обеспечения более высокого вакуума и скорости потока. Также распространено использование нескольких перекачивающих насосов в системе, чтобы обеспечить резервирование в случае отказа насоса.

 

Кинетические насосы

Кинетические насосы используют принцип импульса через крыльчатки (лопасти) или введение пара для проталкивания газа к выпускному отверстию.

Турбомолекулярный насос (сухой, вторичный): давление 7,5 x 10 -11 торр, скорость откачки 10–50 000 л/с.

Все насосы Kinetic являются вспомогательными насосами, поскольку они используются для работы с высоким давлением. Одним из сухих методов является турбомолекулярный насос, в котором используются высокоскоростные вращающиеся лопасти внутри камеры, приводящие в движение молекулы газа. Передавая импульс от вращающихся лопастей молекулам газа, увеличивая скорость их движения к выходному отверстию. Эти насосы обеспечивают низкое давление и низкую скорость перекачивания.

Пародиффузионный насос (мокрый, вторичный): давление 7,5 x 10 -11 Торр, скорость откачки 10–50 000 л/с.

Пародиффузионный насос использует высокоскоростной нагретый масляный пар, который использует кинетическую энергию для перемещения молекул газа от входа к выходу. Отсутствие движущихся частей и пониженное давление на входе.

 

Насосы прямого вытеснения

Другой формой типа передачи является объемный насос. Основной принцип объемного насоса заключается в том, что, расширяя первоначальный объем в камеру, они перемещают небольшие изолированные объемы газа на разных этапах, сжимая их до меньшего объема и под более высоким давлением выбрасывая наружу. Эти насосы работают в диапазоне более низких давлений и относятся к категории первичных или бустерных насосов и включают в себя мокрые или сухие технологии. Вот различные типы объемных первичных вакуумных насосов:

Пластинчатый насос с масляным уплотнением (мокрый, первичный): давление 1 x 10 -3 мбар, скорость откачки 0,7–275 м 3 /ч (0,4–162 фута 3 /мин)

3 Масло Герметичные роторно-лопастные насосы сжимают газы с помощью эксцентрично установленного ротора, который вращает набор лопастей. Под действием центробежной силы эти лопасти выдвигаются и образуют камеры между собой и корпусом. Перекачиваемая среда удерживается внутри этих камер. При дальнейшем вращении их объем постоянно уменьшается. Таким образом, перекачиваемая среда сжимается и транспортируется к выходу. Пластинчато-роторные вакуумные насосы доступны в одноступенчатом и двухступенчатом исполнении.

 

Жидкостно-кольцевой насос (влажный, первичный): давление 30 мбар, скорость откачки 25–30 000 м смещенное от центра рабочее колесо с лопастями, изогнутыми по направлению вращения, которые образуют движущееся цилиндрическое кольцо жидкости вокруг корпуса за счет центробежного ускорения. Лопасти создают серповидные пространства разных размеров, когда они вращаются и герметизируются жидкостным кольцом. Вблизи всасывания или впуска объем увеличивается, что приводит к падению давления в каждом из них и втягиванию газа. По мере его вращения объемы между каждой лопастью уменьшаются из-за эксцентрично расположенного рабочего колеса и образования жидкостного кольца. Это сжимает газ при его разряде, создавая непрерывный поток.

 

Мембранный насос (сухой, первичный): давление 5 x 10 -8 мбар, скорость откачки 0,6–10 м 3 /ч (0,35–5,9 фута/мин) 7 0 900 0 3 Мембранные насосы

представляют собой объемные вакуумные насосы сухого метода. Диафрагма сидит на стержне, соединенном через коленчатый вал, который перемещает диафрагму вертикально при вращении. Когда диафрагма находится в нижнем положении, объем в камере увеличивается, снижая давление и втягивая молекулы воздуха внутрь. Когда диафрагма поднимается, объем уменьшается, и молекулы газа сжимаются при движении к выпускному отверстию. И впускной, и выпускной клапаны подпружинены, чтобы реагировать на изменения давления.

Спиральный насос (сухой, первичный): давление 1 x 10 -2 мбар, скорость откачки 5,0 – 46 м 3 /ч (3,0 – 27 футов 3 /мин)

Использование спиральных насосов два невращающихся витка спиральной конструкции, где внутренний вращается по орбите и улавливает газ во внешнем объемном пространстве. По мере того, как он движется по орбите, объем газа становится все меньше и меньше, сжимая его до тех пор, пока он не достигнет минимального объема и максимально допустимого давления, и выбрасывается на выходе, расположенном в центре спирали.

Насосы типа Рутса (сухие, бустерные): давление -3 Торр, скорость откачки 100 000 м 3 /ч (58 860 футов 3 /мин) не касаясь, как счетчик вращается. Это встречное вращение создает максимальный расход, так как объем увеличивается на входе при одновременном уменьшении на выходе сжимающего давления. Эти насосы предназначены для применения в тех случаях, когда требуется удаление больших объемов газа.

Кулачковые насосы (сухие, бустерные): давление 1 x 10 -3 мбар, скорость откачки 100–800 м 3 /ч вращающиеся когти, которые вращаются в противоположном направлении. Они чрезвычайно эффективны, надежны и требуют минимального обслуживания и часто используются в суровых промышленных условиях. Когти находятся в пределах 2/1000 дюймов друг от друга, но на самом деле никогда не соприкасаются. Этот минимальный зазор между кулачками и корпусом камеры оптимизирует внутреннее уплотнение, устраняя износ и потребность в смазочных материалах или маслах.

 

Винтовые насосы (сухие, бустерные): Давление 1 x 10 -2 торр, скорость откачки 750 м вращающиеся винты, горизонтально расположенные внутри камеры, один левый и один правый, которые также зацепляются без контакта. Молекулы газа, введенные с одного конца, захватываются между двумя винтами, и по мере их вращения в противоположных направлениях газ выталкивается в пространство с уменьшающимся объемом, сжимая его на выходе и создавая пониженное давление на входе.

 

Заключение

Как видите, выбор вакуумного насоса для процесса удаления газов зависит от многих факторов. К ним относятся диапазоны давления и скорости откачки, скорость потока, тип газа, размер объема, ожидаемый срок службы и расположение вашей системы. Это может быть сложной задачей, которая может занять много времени и денег, если выбрана неправильно. Anderson Process может упростить этот процесс выбора благодаря экспертным знаниям, обширному ассортименту насосов и оборудования, а также полному инженерному и производственному оборудованию, если ваша система требует решения, изготовленного по индивидуальному заказу.

Anderson Process является авторизованным поставщиком уникального ассортимента продукции, которая может удовлетворить спрос для различных областей применения в любой отрасли. К этим типам насосов относятся роторно-лопастные, жидкостно-кольцевые, спиральные, сухие винтовые и кулачковые насосы с полным набором диапазонов давления и скоростей откачки для работы со скоростями потока, требуемыми для вашего вакуумного приложения.

Вакуумные насосы: объяснение инженерного мышления

Узнайте, как работают вакуумные насосы, основные части и почему мы их используем. В этой статье подробно описывается основной принцип работы одноступенчатых и двухступенчатых вакуумных насосов для инженеров HVAC. Другие статьи по проектированию ОВКВ НАЖМИТЕ ЗДЕСЬ .

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube.

Что такое вакуумные насосы?

Вакуумные насосы широко используются инженерами по кондиционированию воздуха и холодильной технике для удаления из системы воздуха или неконденсирующихся примесей, таких как вода. Нам необходимо удалить их из системы, потому что они приводят к неэффективной работе холодильной системы, а также могут вызывать коррозию внутренних частей.

Эта процедура выполняется перед заправкой новой системы или после ремонта существующей системы, в которой хладагент уже был восстановлен. В любом случае есть вероятность, что воздух и влага загрязнили систему.

Куда они подключены?

В типичной системе кондиционирования воздуха вы увидите эти вакуумные насосы, подключенные через коллектор к сторонам высокого и низкого давления системы. Лучший способ сделать это — снять коллектор и подключить вакуумный насос к линии всасывания с манометром, подключенным к жидкостной линии, поскольку это самая дальняя точка в системе, поэтому вы получите точные показания.

Подсоедините манометр к кондиционеру

Мы объединились с нашим другом Брайаном из школы HVAC для написания этой статьи. Его видео на YouTube расскажет вам, как на самом деле подключить вакуумный насос к реальной системе, а также даст вам множество отличных технических советов для развития ваших знаний и навыков. Чтобы посмотреть его видео на YouTube из НАЖМИТЕ ЗДЕСЬ.

Основные части вакуумного насоса

Если взять стандартный вакуумный насос, то он выглядит примерно так, как показано ниже.

Вакуумный насос

У нас есть электродвигатель сзади, компрессор спереди, ручка сверху и опорное основание снизу. Затем у нас есть впуск, который соединяется с системой для удаления воздуха из системы, и у нас также есть выхлоп для рассеивания его в атмосфере. На передней части секции компрессора мы найдем смотровое стекло уровня масла, чтобы мы могли определить, сколько масла находится в камере, а также его состояние.

Части вакуумного насоса

Когда мы разбираем устройство, мы видим, что у нас есть вентилятор и защитный кожух, установленный на задней части двигателя. Внутри двигателя у нас есть статор с катушками. Концентрично этому; у нас есть ротор и вал, который приводит в движение компрессор. Спереди у нас камера сжатия. Это версия двухступенчатого компрессора, которая позволяет нам создавать более глубокий вакуум, поэтому у нас есть две камеры сжатия. Внутри камер находятся роторы компрессора и лопасти, которые вытесняют воздух из системы. В верхней части камеры сжатия находится язычковый клапан, который выпускает выхлопные газы. Когда мы снимаем защитный кожух вентилятора, мы видим, что вентилятор соединен с валом, который проходит через насос. Вентилятор используется для охлаждения электродвигателя и обдувает кожух окружающим воздухом, рассеивая его. Ребра на корпусе увеличивают площадь поверхности корпуса, что позволяет отводить больше нежелательного тепла.

Ребра на корпусе помогают отводить тепло

Внутри двигателя

Внутри двигателя находится статор, намотанный медными катушками. Когда электрический ток протекает через медные катушки, он создает магнитное поле. Это магнитное поле воздействует на ротор, и это заставляет его вращаться. Ротор соединен с валом, а вал проходит по всей длине насоса от вентилятора до компрессора. Сюда; когда ротор вращается, вращается и компрессор, и это то, что мы используем для создания эффекта вакуума и удаления воздуха из системы.

через GIPHY

Просто обратите внимание, когда мы думаем о вакууме; мы думаем о всасывающей силе, но на самом деле это не так. Ниже мы подробно объясним, почему.

Внутри компрессора

Если мы заглянем внутрь компрессора, то увидим, что у нас есть вход, который подключен к системе, которую мы откачиваем. Затем у нас есть выход и язычковый клапан, который выпускает воздух и влагу, которые извлекаются.

В центре ротор сжатия и камера сжатия. Обратите внимание, что ротор установлен эксцентрично внутри камеры, что означает, что он не точно по центру, это ключевая особенность, которую мы подробно рассмотрим ниже. Вал соединяется с ротором и заставляет его вращаться.

Внутри ротора установлены две подпружиненные лопасти. Пружины всегда пытаются вытолкнуть лопасти наружу, но они удерживаются на месте стенками камеры сжатия. Кончики лопастей всегда соприкасаются со стенкой, а тонкий слой масла помогает создать уплотнение между ними. Когда ротор вращается, пружины продолжают толкать лопасти наружу, так что лопасти повторяют контур камеры сжатия.

Внутри вакуумного насоса

Когда насос запускается, ротор перемещается по входному отверстию и обнажает область внутри камеры сжатия. Эта область будет находиться под более низким давлением по сравнению с давлением внутри системы; поэтому воздух и влага внутри системы охлаждения устремятся внутрь, чтобы попытаться заполнить эту пустую область.

Почему это происходит?

Давление всегда течет от высокого к низкому, поэтому, если мы подключим, например; два баллона с разным давлением, газы будут перемещаться из стороны высокого давления в сторону низкого давления, пока оба не будут иметь одинаковое давление. Сторона низкого давления была вакуумом, но она не всасывала газы внутрь, а сторона высокого давления проталкивалась внутрь. Это эффект вакуума. Газы хотят выровняться и будут течь от высокого давления к низкому давлению. Газы пытаются выровнять давление в соединенных областях. Поэтому мы используем вакуумный насос, чтобы создать область более низкого давления, чтобы нежелательные газы
внутри системы охлаждения вырвется из системы, чтобы попытаться заполнить эту область более низкого давления.

В нашем сценарии соединительный шланг и новая область низкого давления в камере сжатия становятся продолжением системы охлаждения, поэтому газы в системе будут устремляться, чтобы заполнить это и попытаться уравнять давление между ними. Однако это ловушка, потому что по мере того, как ротор продолжает вращаться, вторая лопасть подметает и захватывает этот объем газа в камере между двумя лопастями. Другая лопасть проходит через вход и создает еще одну область более низкого давления, поэтому все больше газов устремляется внутрь, чтобы снова и снова заполнять эту пустоту. По мере вращения компрессора объем камеры начнет уменьшаться, поэтому ротор не идеально отцентрирован, поэтому мы можем варьировать объем захваченных газов. Это уменьшение объема сожмет газы в более тесное пространство, что повысит давление и температуру.

Он продолжает вращаться в меньший объем, пока давление не станет достаточно высоким, чтобы открыть язычковый клапан на выпуске и выпустить газы.
Компрессор продолжает вращаться, и при этом в систему втягивается следующая порция газов, и этот цикл продолжается.

через GIPHY

Большинство вакуумных насосов будут двухступенчатыми, что означает наличие двух последовательно соединенных камер сжатия, при этом выхлоп из первого компрессора выходит непосредственно на вход второй камеры.