Подключение конденсатора к электродвигателю 220в: Как подключить конденсатор к электродвигателю | Полезные статьи
Содержание
Схема подключения электродвигателя на 220в через конденсатор: рассчитываем необходимую емкость
Автор Aluarius На чтение 6 мин. Просмотров 14.7k. Опубликовано
Содержание
- 1 Схемы подключения
- 2 Как рассчитать емкость
Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.
Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.
Что при этом получается?
- Скорость вращения не изменяется.
- Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.
Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.
Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.
Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.
И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.
Схемы подключения
Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:
- Два контакта подсоединяются к сети.
- Один через конденсатор к обмотке.
Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться. Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой. На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.
В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.
Как рассчитать емкость
Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.
Соединение звездой:
Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.
Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:
I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.
Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:
C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.
Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.
- Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
- Низкая мощность двигателя, значит, емкость занижена.
Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).
Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.
Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.
В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.
Быстрое подключение асинхронного двигателя на 220 без конденсатора
Содержание
- 1 Варианты подключения обмоток двигателя
- 2 Запуск мотора
- 3 Теория В. Голика
- 4 Схемы, разработанные В. Бурлако
- 4.1 Способ 1 – старт мотора ключем симистора
- 4.2 Запуск мотора с высокими пусковыми моментами
- 5 Тиристорный преобразователь
- 5. 1 Логическая интерпретация
- 5.2 Силовая часть
- 6 Общая характеристика
- 7 Вывод
В статье мы расскажем об асинхронных двигателях, а именно об их подключении к сети на 220 вольт без применения конденсатора. Вопрос довольно актуальный сегодня, ведь обеспечение энергоэффективности в современных системах выходит на первый план.
Схема управления асинхронным двигателем
Электродвигатель асинхронного типа представляет собой устройство, работающее от переменного тока, в котором напряжение находится в роторе. Основное назначение роторного тока – создание момента вращения посредством электромагнитной индукции, которая идет из магнитного поля статорной обмотки.
Устройства данного типа бывают двух видов: одно- и трехфазные. В первом случае силовой агрегат питается от источника электроэнергии с одной фазой. Приборы представляют собой маломощные агрегаты, используемые в домашних или офисных условиях, где подача однофазного электропитания осуществляется от электросети и ее полюсов.
Трехфазные же модификации работают, соответственно от источников питания, обладающих тремя фазами. Мотор работает в различных конфигурациях: дельта или звездообразной, исходя из требований приложения. Устройства отличаются высокой мощностью, свое применение находят в промышленной отрасли.
Варианты подключения обмоток двигателя
Доступны всего два варианта подключения обмоток асинхронных электрических моторов:
- по «звездной» схеме.
- по варианту «треугольник».
В последнем случае подсоединения используются устройства, которые характеризует большую мощность, отдаваемую приводом. Однако при запуске силового агрегата продуцируется высокий уровень пускового тока, что представляет опасность для любого бытового прибора. Если подключать по схеме «звезда», можно добиться наиболее плавного пуска двигателя, т. К. Ток небольшой. Вы не можете получить от привода большой мощности.
Подключение асинхронного двигателя теругольник и звезда
Схема соединения электродвигателя мощность в 380В к сети 220В, организованная «треугольником», обеспечивает максимальный показатель рабочей мощности. Когда же показатель питания – 380 вольт, тогда катушки подключаются типом «звезда». Это особенно важно, ведь при высоких напряжениях при старте, пусковой ток также увеличивается.
Это может повредить электропривод. При нехватке мощности можно запустить двигатель с подключенными катушками первым способом, а после перехода в рабочий режим произвести коммутацию и включить обмотки способом «треугольник».
Модели асинхронного типа имеют простую конструкцию, массово используются в разнотипных приложениях. Не стоит обходить стороной их невысокую стоимость, которая в некоторой степени и определяет распространение компонентов. Они присоединяются к обыкновенным сетям на 220 воль (однофазные), но, что делать, если есть необходимость в расширении мощностного потенциала? Выход простой – подпитать трехфазный силовой агрегат к однофазной сети. При этом нет необходимости использовать конденсаторные детали. Реализовано сразу несколько схем по созданию такого подключения, и каждая из них заслуживает внимания. Рассмотрим же детально каждую из них и определим сильные стороны и выгоды от реализации.
Подключение звезда
Запуск мотора
Как вы уже поняли, запуск двигателя будет осуществляться без применения конденсатора. Чтобы осуществить подключение по этому методу, достаточно иметь самый типичный асинхронный двигатель. Авторы научных книг, среди которых есть В. Голик, указывают на то, что номинальные обороты моторного ротора должны быть на уровне 1500 об./мин, а не 3000. Связывают это с особенностями статорных обмоток.
Мощность силовых агрегатов ограничивается электрическими параметрами диодов силового типа и тиристоров, которые составляют 10 ампер, при этом показатель обратного напряжения превышает 300 вольт. 3 обмотки статора нужно присоединять, применяя треугольное подсоединение. Выводы же группируются на колодке клемм, при помощи упорядоченных перемычек.
Напряжение в 220В подается через автоматический защитный выключатель автоматического действия. Подключение проводится параллельно одной из обмоток, определим ее как «А». Остальные две («В» и «С») последовательно соединяются друг с другом и параллельно с «А». К выходам одной части, например, «С», устанавливается электронный блок, определим его «К».
Рассмотрим ситуацию, при которой контакт блока всегда разомкнут и напряжение бесперебойно подается. При ней по вышеописанным цепям «А», «В» и «С» будут протекать токи типов Ia и Ib+c. Резистивно – индуктивные уровни сопротивления на всех статорных обмотках одинаковые. Эта особенность обусловливает превышение тока вдвое на цепочке «А», по сравнению с направлением Ib+c. По фазе будет наблюдаться совпадение цепей.
Каждый ток по отдельности создает возле себя намагниченные потоки, которые не приводят в движение роторный элемент. Для обеспечения работы мотора, нужно провести сдвиг по углу двух магнитных потоков или же между собой двух токов. Именно для этой задачи в схеме реализован электронный блок (ключ). Конструкция компонента позволяет ему кратковременно замыкаться и размыкаться, проводя шунтирование второй обмотки «В».
Пример маркировки электродвигателя
Для запуска ключа выбирается временной промежуток, при котором синусоида тока имеет наивысшее амплитудный показатель. Сила тока в третьей катушке «С» минимальная, что обусловливается наличием индуктивного сопротивления.
При проведении закорачивания сопротивления «В» в общей цепочке с «С», создается бросок тока, при помощи замкнутого контакта по виткам третьей обмотки. Сам контакт довольно быстро взрастает, после чего уменьшается под воздействием спада амплитуды напряжения, который плавно стремится к нулю.
Также в системе образуется так называемый временной сдвиг, который маркируется ϕ. Благодаря образованному углу сдвигания, генерируется единый сильный намагниченный поток, который и приводит ротор в движение.
Подача тока в третьей катушке «С» при функционировании ключа отличается от формы напряжения, реализованной в гармоничной синусоиде. Несмотря на это, она никак не влияет на генерирование момента вращений на вале мотора. Когда осуществляется переход полуволны от синусоиды в сферу «минусовых» показателей, ситуация повторяется, а сам силовой агрегат раскручивается дальше, чем до этого.
Теория В. Голика
В основе такой реализации лежит запуск мотора с использованием имеющейся элементной базы. В состав силовой части электрического ключа, с помощью которого осуществляется коммутация, входят такие мощные элементы:
- два диода: VD 1 и 2;
- тиристоры: VS 1 и 2.
Все эти детали подключены с применением схемы обыкновенного моста. Но, в данной схеме эти элементы реализуют другую функцию – проводят шунтирование обмотки подсоединенного мотора посредством своих «плеч» из одного диода и транзистора. Осуществляется это сразу после достижения агрегатом амплитудных параметров от синусоиды, представленной на схеме. Благодаря такому подключению создается электронный блок двунаправленного срабатывания, который в процессе работы реагирует на волны гармоник. Они бывают двух типов:
- положительные;
- отрицательные.
С помощью диодов VD 3 и 4 реализуется напряжение импульса с двумя полупериодами. Сигнал этот поступает напрямую на цепи управления. Ограничивается он и далее стабилизируется при помощи резисторного элемента R1 и стабилизатора VD5.
Сигналы, нацеленные на открывание тиристоров электрического ключа, исходят от транзисторов с 2 полюсами, на рисунке они маркируются как VT 1 и 2. Резистор переменного действия R7, рассчитанный на 10 кОм, выполняет важную функцию регулирования момента открывания тиристора.
В ситуациях, когда его регулятор находится в начальномм положении сопротивления, электрический блок активируется даже при самом малом напряжении амплитуды, которая имеет место в обмотке «В».
Наличие наивысшего ввода резисторного сопротивления R7 позволяет отключать ключ. Старт схемы проводится, когда положение ползунка вышеуказанного резистора соответствует показателю самого высокого сдвига токовых фаз между катушками.
Электронный ключ на симисторе
Старт системы реализуется достаточно просто – необходимо перевести ползунок R7 в положение, полностью соответствующее наибольшему фазовому сдвигу токов между катушками. Далее происходит сдвигание регулятора, тем самым определяя самый устойчивый рабочий режим, напрямую зависящий от уровня приложенной нагрузки и мощности электродвигателя. Силовые агрегаты с разными показателями номиналов взаимозаменяемые, широко представленные на отечественном рынке.
Силовые компоненты системы, реализованные с целью дальнейшей работы с моторами малых мощностей, могут конструироваться без охладительных радиаторов в конструкции. Когда же распределители функционируют на максимальных ресурсах, использование теплоотвода является обязательным.
Электрические блоки применяются под напряжением сети 220В . Отдельные компоненты необходимо тщательно заизолировать, тем самым защитив от случайных касаний. Соблюдение мер безопасности – еще один немаловажный аспект при реализации подключения, который обязательно необходимо соблюдать.
Схемы, разработанные В. Бурлако
Данная методология также является одной из активно применяемых, что обусловливается особенностями реализации. Несмотря на то, что общие принципы регулирования такие же, как те, которые предложил В. Голик, схемы все-таки являются разными.
Способ 1 – старт мотора ключем симистора
По своей сути, метод является усовершенствованной реализацией метода, представленного Голиком. Здесь мы имеем существенно упрощенную схему подключения трехфазного электрического двигателя.
Пример диаграммы работы тиристоров
К особенностям нового способа относят:
- использование единого симистора VS1 от TC-2-10, вместо привычных двух тиристорных компонентов и силового блока. Деталь также отвечает за шунтирование другой обмотки «В», в то момент, когда достигается требуемый показатель напряжения. При этом, ток цепочки должен быть на минимуме;
- создание сдвига фаз для токов во всех параллельных обмотках. Показатель общий с предыдущей схемой и находится в диапазоне 51 – 80 градусов, которых с лихвой хватает на обеспечение вращений ротора;
- применение ключа, который отвечает за работу симистора VS1. Он устанавливается на динистор симметричного типа с маркировкой VS2, для каждого отдельного периода гармоник напряжений. Ключ получает командные сигналы от цепочки сдвигания фаз, которая включает резистивно-емкостные компоненты;
- сдвиг фазы посредством конденсатора «С» усиливается общим сопротивлением компонентов R1 R2. Вспомогательный резистор R2 на 68 килоом выполняет функции компонента R7 из вышеописанной схемы, обеспечивая регулирование времени зарядки конденсатора, и, как следствие – момент запуска VS2, а уже с его помощь – VS1.
Автор также предоставляет свои рекомендации по сборке и настройке созданной схемы. Она разрабатывалась для использования с двигателями, ресурс которых позволяет раскручивать ротор до 1500 об/мин. Электрическая мощность при этом – 0,5 – 2,2 киловатта.
Если же электронные ключи применяются на машинах с высокими показателями рабочей мощности, нужно обязательно обеспечить теплоотвод. Реализуется он с применением VS1 симистора. При проведении настройки необходимо смотреть на оптимальное состояние подгонки угла сдвижения фаз для токов между компонентами обмотки. Это обеспечит двигателю тихую слаженную работу, без вибраций, шумов и др. С такой целью можно менять номиналы у компонентов цепи фазосдвигания.
Симисторы можно использовать самые разные, главное, чтобы они полностью отвечали характеристикам электромеханики. Например, импортный элемент DB3 взаимозаменяем с динистором отечественного производства КР1125.
Запуск мотора с высокими пусковыми моментами
Здесь, как и в других схемах не применяется конденсатор. Методика является отличным вариантом для регулирования работы электродвигателей, которые были собраны для обеспечения моментов вращений в 3000 за минуту. Это обусловливает в схеме одну особенность – изменения системы подключения катушек на звездообразную. Ранее применялась треугольная схема. В процессе генерируется крутящий момент на порядок выше, обеспечивающий быстрый запуск ротора.
В чем же отличия этой схемы от предыдущей? Первое, что стоит указать – это наличие вспомогательного электрического ключа (блока), который соединяется с обмоткой «А», тем самым создавая дополнительный фазовый сдвиг тока. Он играет важную роль при эксплуатации в сложных производственных условиях. При этом алгоритм настройки аналогичен предыдущему.
Тиристорный преобразователь
Данная разработка дает возможность с высокой эффективностью сохранять параметры мощности моторов, при подключении в электросеть с одной фазой. Разработка принадлежит В. Соломыкову.
Тиристорный преобразователь автор В Соломыкова
Решение лежит в основе всех современных ПЧ, хотя разработана с учетом более ранней, проверенной базы.
С помощью тиристорного преобразователя, получается конструировать такие формы напряжений, которые будут максимально приближенные к идеальным для каждой фазы. Будут иметь место также гармоники синусоид, которые отлично сочетаются с асинхронными электрическими двигателями.
Подача энергии от 1-фазной электросети на 220В осуществляется с помощью защиты – автоматического разъединителя SF1 и моста диодов, имеющего в основе Д233В. На выходе силовые цепи получаются, благодаря работе ключей тиристоров VS1-6.
Сдвиг токовых фаз для источника питания каждой катушки мотора собственным напряжением обусловливается функционированием 2 основных микросхем:
- DD1 – для К176ЛЕ54
- DD2 – для R176 ИР2.
Платы дают возможность формировать такты сдвигов напряжений от сигналов во всех регистрах, а их комбинации подаются на порты для регулирования работы тиристоров VS1 – 6, посредством самостоятельных транзисторов VT 1 – 6, по диаграмме, которая была ранее спланирована.
Логическая интерпретация
Схема типа К176ИР2 генерирует сразу 2 раздельных регистра сдвига на 4 разряда. Они в свою очередь обладают четырьмя выходами Q от каждого из триггеров. Каждый «пускатель» относится к типу D и является двухступенчатым.
Микросхема К176ИР2
Введение ведомостей в регистр осуществляется также через порт D. Реализован и вход для подачи команд, тактового типа С. Они идут через порты D от начального триггера, далее сдвигаются по ходу движения на 1 такт.
Сброс выходных данных из регистра Q осуществляется, когда на вход R поступает напряжения из логического уровня. Такое обнуление еще называют асинхронным сбросом.
Силовая часть
Схема также обладает и силовой частью, которая имеет свои принципы и особенности наладки и дальнейшего управления. Итак, когда напряжение подается на схему, то происходит обнуление регистра сдвига платы DD2. Это в свою очередь способствует завершению заряда емкостей С2 далее по цепи через элемент R5. Когда происходит заряд, мгновенно срабатывает DD1.1 – являющийся, по сути, логическим компонентом. Он и «разрешает» сдвиг импульса для дальнейшего регистра DD2.
Пример схемы К175ЛЕ5
Когда же осуществляется переход регистра в логическое положение 1, тогда проводится подача сигнала на основу его биполярного транзистора – VT 1 – 6. Он открывается и посылает сигнал на свой тиристор, а именно – на его электрод управления.
В результате мы получим трехфазное напряжение, которое возникнет между силовыми клеммами на выходе. Оно является достаточно близким к синусоидальной форме, при этом, сдвинутым векторно между собой на максимальный угол 120 градусов.
Силовой агрегат асинхронного типа, который регулируется согласно этой схеме, способен развивать самую высокую мощность, среди всех описанных вариантов. Частота, с которой осуществляется коммутация, подбирается экспериментальным способом, при проведении настройки за счет подбора емкостных номиналов: С 4, 5 или 6. Их уровни определяются мощностью самого двигателя.
Конденсаторная мощность рассчитывается по такой формуле:
С = 0,01Р (Вт) / n*1/30n (мкФ)
Когда имеет место номинальная частота оборотов ротора, тогда показатель n определяют как 1. R3 и R4, которые являются резисторами, после наладки убирают, а на место последнего монтируют конденсатор, емкость которого – 0,68 микрофарад. Далее, что делают – припаивают резистор регулировки, рассчитанный на 15 кОм. Устанавливают его к местам А и В. Здесь элемент выполняет основную функцию – максимально точно выставляет частоты оборотов роторных деталей двигателя.
Общая характеристика
В инверторе входящая однофазная сеть выпрямляется до постоянного тока, а затем «прерывается» до трехфазного переменного тока, который подается на трехфазный двигатель. Преимущество инвертора или частотно-регулируемого привода состоит в том, что оператор имеет возможность управлять скоростью работы двигателя. Ему в этом помогает огромное количество пользовательских настроек, которые позволяют выбирать выбранное изменение скорости, а также обнаружение и защиту от перегрузок силового агрегата. Также можно осуществлять регулирование компенсации скорости и момента вращения. Хотя, стоит отметить, что данный метод далеко не всегда является лучшим решением.
Пример безконденсаторного запуска 3фазного двигателя от й фазной сети
Частотный преобразователь помогает создавать дополнительные фазы при помощи конденсаторов, которые подключаются между фазой и «нейтралью» первой фазы к обмотке мотора. Если это реализуется с нагрузочным двигателем, тогда преобразователь статический. Для них требуется минимальная нагрузка для генерации разумного псевдотрехфазного тока, и часто необходимо иметь номинальную мощность, превышающую максимальную нагрузку, чтобы обеспечить хорошую производительность двигателя.
Но, в статье мы рассмотрели 4 ключевые схемы реализации подключения без использования конденсатора, которые получили более широкое распространение в деятельности.
Вывод
Схемы, представленные в сегодняшней статье, включают только необходимые компоненты, ничего лишнего. Их с легкостью можно собрать своими руками, обладая минимальными знаниями в области электрики.
Можно также начать реализовывать более сложные методики, например, по подключению трехфазного мотора к однофазным сетям питания, но с использованием современного электронного инструментария. Решение более сложное, поэтому требует профессиональных навыков и знаний в электромеханике.
Какую именно схему применять для своего оборудования – каждый пользователь решает самостоятельно. Произвести старт асинхронного трехфазного электродвигателя без мощностных потерь, можно, применяя преобразователь частоты промышленного назначения.
Электропроводка
— Как подключить однофазный электродвигатель вентилятора
Задать вопрос
спросил
Изменено
4 года, 11 месяцев назад
Просмотрено
81к раз
\$\начало группы\$
У меня есть однофазный двигатель электровентилятора Electro ADDA C80M-2 мощностью 0,75 кВт, который мне нужно подключить и включить для питания циклонного пылеуловителя, который я построил. Я думал, что это будет проще простого: снимите крышку проводки и подключите красный к красному, синий к синему, зеленый к земле. Но вот что я нашел:
Темный мир схем электродвигателей с Z2, U1, Cr (переключатель?) и так далее. Я полагаю, слишком многого стоит ожидать от линии и нейтральной маркировки?
Если я правильно читаю схему, в настоящее время она настроена на вращение по часовой стрелке, и я прикрепил клемму заземления благодаря красивому символу на корпусе, но, боюсь, у меня нет уверенности в каком терминале взять живой и нейтральный.
Пожалуйста, помогите, если можете.
- двигатель
- проводка
\$\конечная группа\$
1
4
голосов
\$\начало группы\$
Картинки должны помочь:
Как сказал @Asmyldof, двигатель не имеет понятия «горячий» или «нейтральный», поэтому полярность подключений переменного тока не важна. Подключите один из них к горячему, а один к нейтральному. Двигатель будет вращаться в том же направлении, даже если вы поменяете местами эти соединения. Для реверсирования двигателя необходимо снять металлические перемычки и переставить их, как показано на схеме.
Обратите внимание, что вы абсолютно должны заземлить корпус двигателя, но это защитная мера (провод с желтой/зеленой полосой является соединением заземления), но заземление не является нейтралью .
\$\конечная группа\$
\$\начало группы\$
При переменном токе (однофазном) для электроники/электрики не имеет значения, что куда, потому что ток течет в обоих направлениях в равных количествах в течение одинаковых периодов времени, поэтому устройство не может определить, что есть что.
Если только он не сравнивает их с Землей, чего делать не следует, потому что это означает подачу тока в землю и, возможно, срабатывание защиты от замыкания на землю (если не люди облизывают вентилятор, мы все делаем это время от времени).