Тел: (831) 216 17 13
8(987) 544-18-81
[email protected]

Адрес: 603034 Нижний Новгород,
Ленинский район, ул. Ростовская д.13
офис №2

Рассрочка от организации0%
на все виды услуг

Включение 3-х фазного двигателя в однофазную сеть (стр. 1 из 2). Подключение 3 фазного двигателя в однофазную сеть без потери мощности


Подключение асинхронного двигателя к однофазной сети (видео, схема)

После своего изобретения трехфазные двигатели успешно используются до сих пор без каких-либо существенных изменений. Подключение асинхронного двигателя к однофазной сети было лишь делом времени, так как они намного проще в эксплуатации и обслуживании, чем их коллекторные собратья. А ведь в домашних условиях используется именно однофазная сеть, а хороший двигатель нужен не только на производстве. Какие электрические машины можно использовать дома или на даче, и как правильно их запустить в работу от обычных 220 В?

ОГЛАВЛЕНИЕ

  • Одна фаза вместо трех
  • Подключение фазосдвигающего конденсатора
  • Расчет конденсатора
  • Постепенный разгон
  • Одна фаза

Одна фаза вместо трех

Самый распространенный вариант – трехфазный асинхронный двигатель. В пазах неподвижного статора уложены три обмотки со сдвигом 120 электрических градусов. Для пуска необходимо через них пропустить трехфазный ток, который, проходя по каждой обмотке в разное время, создает вращающий момент, раскручивающий ротор. При подключении однофазной сети такого не происходит. Поэтому здесь необходимы дополнительные элементы, такие как фазосдвигающий конденсатор. Это самый простой способ.

На скорость вращения ротора это не повлияет, а вот мощность такой электрической машины упадет. В зависимости от нагрузки на валу, емкости конденсатора, схемы подключения, потери составляют 30–50 %.

Стоит сразу отметить, что аппараты не всех марок работают по однофазной схеме. Но все-таки большинство позволяет проводить с собой подобные манипуляции. Всегда стоит обращать внимание на прикрепленные таблички. Там есть все характеристики, глядя на которые можно увидеть, какая это модель и где она будет работать.

Из первой картинки (А) можно сделать вывод, что данный двигатель рассчитан на два напряжения – 220 и 380 В. Включение обмоток – треугольник и звезда. От обычной домашней сети его запустить можно (есть соответствующее напряжение), и желательно треугольником.

Вторая (Б) показывает: электрическая машина рассчитана на 380 В, включение звездой. Теоретически, на меньшее напряжение переключиться возможно, но для этого нужно разбирать корпус, искать соединение обмоток и переключать их на треугольник. Можно, конечно, ничего не переключать просто поставив конденсатор. Однако потери мощности будут колоссальными.

Если на табличке написано: Δ/Ỵ 127/220, то к сети 220 В такой аппарат можно включать только звездой, иначе он сгорит!

Подключение фазосдвигающего конденсатора

Оптимальный вариант подключения трехфазной машины в работу от 220 вольт, это треугольником. Так потери составят около 30%. Два конца в борне идут непосредственно к сети, а между третьим концом и любым из этих двух включают конденсатор.

Такой пуск возможен если нет никакой серьезной нагрузки: например, при подключении вентилятора. Если будет нагрузка, то ротор либо не будет крутиться вообще, либо запуск будет происходить очень долго. В этом случае стоит добавить пусковой конденсатор.

При этом будет хорошо использовать выключатель, у которого один контакт замыкался бы и фиксировался, пока его не отключишь, а другой отключался, когда его отпускают. Так можно на непродолжительное время подсоединять в работу пусковой конденсатор. Направление вращения изменяется переключением конденсатора в схеме на другую фазу.

На практике это может выглядеть так:

Схема для пуска в работу трехфазного двигателя к однофазной цепи звездой тоже несложная. Потери будут больше, но иногда другого выхода просто нет.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

загрузка...

Расчет конденсатора

Вполне естественный вопрос о том, конденсатор с какими параметрами нужно использовать для запуска и работы такого аппарата. Все зависит от того, звездой или треугольником соединены обмотки на трехфазной машине.

  • Для звезды существует такой расчет: Cр = 2800•I/U.
  • Треугольник:Cр = 4800•I/U.

Cр– емкость рабочего конденсатора в микрофарадах; I – ток в амперах, U – напряжение сети в вольтах.

  • Ток можно посчитать таким образом: I = P/(1.73•U•n•cos ф).

Р – это мощность асинхронного аппарата, написанная на его бирке,n – его КПД. Он указан там же; рядом написан и cos ф.

Есть и упрощенный вариант расчета. Он выглядит таким образом: C = 70•Pн, где Pн – это номинальная мощность, кВт (на бирке). Из этой формулы можно сделать вывод, что на каждые 100 Вт должно быть около 7 мкФ емкости.

При завышенной емкости конденсатора обмотки будут сильно греться, при заниженной ротор будет тяжело раскручиваться. Поэтому идеальным вариантом является, когда после всех расчетов делается своеобразная «подгонка»: замеряется ток при помощи клещей и добавляются или убираются дополнительные конденсаторы.

Если нужен пусковой конденсатор, то необходимо подобрать его так, чтобы общая емкость (Ср+Сп) в 2–3 раза превышала рабочую(Ср).

Постепенный разгон

Как можно осуществить плавный пуск асинхронного двигателя в однофазной сети? Стоит сразу оговориться, что для домашнего использования это обойдется дорого. Сама схема очень сложна и пробовать собрать ее самостоятельно не имеет смысла. Существуют специальные устройства плавного пуска, которые успешно используются для этой цели. Суть их заключается в том, что первые секунды включения напряжение питания подается заниженным, вследствие чего занижен пусковой момент.

Но так как частота вращения роторатаких аппаратов зависит от частоты питающего напряжения, а не от его величины, то такой вариант подходит только тогда, когда нет значительной нагрузки на валу: насосы, вентиляторы. Если есть нагрузка, тогда лучше всего использовать частотный преобразователь. Он также обеспечит плавный запуск, а также много других замечательных возможностей. Правда, стоит он дороже. Из этого следует вывод: такие устройства больше подходят для использования на производстве, пусть даже небольшом. Для дома это дорого.

Как видно, этот частотник можно питать как трехфазным напряжением, так и одной фазой.

Одна фаза

Для того чтобы выполнить подключение однофазного асинхронного двигателя, достаточно двух кнопок: одна с фиксатором, другая без него. Стандартная схема: две обмотки, включенные последовательно (хотя, в зависимости от модели, могут быть варианты). Та, у которой большее сопротивление – пусковая, другая – рабочая.

Каждая модель электрической машины имеет свои характеристики, а значит, и варианты подключения могут различаться. У некоторых для запуска используется два конденсатора, у других – один.

Следовательно, начинать необходимо с выяснения модели и ее технических характеристик.

Как видно, запуск короткозамкнутых электрических машин возможен по-разному. Подключение возможно как в домашних условиях, так и на производстве, что сделало их такими популярными. И, по большому счету, более чем за сто лет не было придумано ничего лучше.

electricvdele.ru

Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети

электроника для дома

Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента применяют конденсатор. При этом емкость пускового конденсатора должна быть в несколько раз больше емкости рабочей конденсатора. Для ЭД чаще всего применяемых в домашнем хозяйства (0,5...3 кВт), стоимость пусковых конденсаторов соизмерима со стоимость к электродвигателя. Поэтому желательно избежать применения дорогостоящих пусковых конденсаторов, работающих лишь кратковременно. В тожe время применение рабочих, постоянно включенных фазосдвигающих конденсоторов можно считать целесообразным, так как они позволяют загрузить двигатель на75...85% его мощности при 3-фазном включении (безконденсаторов его мощность снижается примерно на 50%).

 

Вращающий момент, вполне достаточный для запуска указанных ЭД от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.

Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5...2,2 кВт и показали очень хорошие результаты (время пуска не намного больше, чем в трехфазном режиме). В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.

Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. За основу этой схемы была взята схема [1], которая упрощена до предела. В этой схеме электронный ключ (симистор VS1) обеспечивает сдвиг тока в обмотке «С» на некоторый угол (50...70°), что обеспечивает достаточный вращающий момент.

Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол. В качестве ключевого элемента в схеме применен симметричный динистор VS2. В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.

Вторая схема (рис.2) предназначена для пускс ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивле ния при пуске. В этих случаях требуется значительно больший пусковой момент. Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда ([2], рис. 14,в), которая обеспечивает максимальный пусковой момент. В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами Один ключ включен последовательно с обмоткой фазы «А» и создает в ней «индуктивный» (отстающий)

сдвиг тока, второй - включен параллельно обмотке фазы «В» и создает в ней «емкостной» (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.

Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.

Подача напряжения на ЭД осуществляется пускателем нажимного «ручного» типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск».

Нажав кнопку «Пуск», путем вращения движка подстроечного  сопротивления R2 подбирают необходимый пусковой момент. Так поступают при наладке схемы, показанной на рис.2.

При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует. В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно. По мере приближения к оптимальному углу двигатель «пытается» вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.

Автор производил отладку схемы, показанной на рис.1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.

При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно. Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть ~220 В. Изменяя величину R, надо установить напряжение на лампе 170 В (для схемы рис.1) и 100 В (для схемы рис.2). Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагрузке не синусоидальная.

Необходимо отметить, что добиться оптимальных углов сдвига токов можно при различных сочетаниях значений R и С фазосдвигающей цепочки, т.е. изменив номинал емкости конденсатора, придется подобрать и соответствующее ему значение сопротивления.

Детали

Эксперименты проводились с симисторами ТС-2-10 и ТС-2-25 без радиаторов. В этой схеме они работали очень хорошо. Можно применить и другие симисторы с двухполярным управлением на соответствующие рабочие токи и класса напряжения не ниже 7. При использовании импортных симисторов в пластмассовом корпусе их следует установить на радиаторы.

Симметричный динистор DB3 можно заменить отечественным КР1125. У него немного меньше напряжение переключения. Возможно, это и лучше, но этот динистор очень сложно найти в продаже.

Конденсаторы С любые неполярные, рассчитанные на рабочее напряжение не менее 50 В (лучше - 100 В). Можно применить также два полярных конденсатора, включенных последовательно-встречно (в схеме рис.2 их номинал должен быть 3,3 мкФ каждый).

Внешний вид электропривода измельчителя травы с описанной схемой запуска и ЭД 2,2 кВт 3000 об/мин показан на фото 1.

В. В. Бурлоко, г. Мориуполь

Литература

1.    // Сигнал. - 1999. - №4.

2.    С.П. Фурсов Использование трехфазных

электродвигателей в быту. — Кишинев: Картя

молдовенскэ, 1976.

radiopolyus.ru

Как подключить электродвигатель 380В на 220В

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

СОДЕРЖАНИЕ (нажмите на кнопку справа):

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

ОЦЕНКА СТАТЬИ:

Загрузка...

ПОДЕЛИТЬСЯ С ДРУЗЬЯМИ:

elektrikexpert.ru

Включение 3-х фазного двигателя в однофазную сеть

Среди различных способов запуска трехфазных электродвигателей в однофазную сеть, наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность развиваемая двигателем в этом случае составляет 50…60% от его мощности в трехфазном включении. Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, с двойной клеткой короткозамкнутого ротора серии МА. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.

Расчет параметров и элементов электродвигателя.

Если, например, в паспорте электродвигателя указано напряжение его питания 220/380, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1

Принципиальная схема включения трехфазного электродвигателя в сеть 220 В

С р – рабочий конденсатор;

С п – пусковой конденсатор;

П1 – пакетный выключатель

После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку "Разгон”. После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.

Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в "треугольник” определяется по формуле:

, где

Ср – емкость рабочего конденсатора в мкФ;

I – потребляемый электродвигателем ток в А;

U -напряжение в сети, В

А в случае соединения обмоток двигателя в "звезду” определяется по формуле:

, где

Ср – емкость рабочего конденсатора в мкФ;

I – потребляемый электродвигателем ток в А;

U -напряжение в сети, В

Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:

, где

Р – мощность двигателя в Вт, указанная в его паспорте;

h – КПД;

cos j – коэффициент мощности;

U -напряжение в сети, В

Емкость пускового конденсатора Сп выбирают в 2..2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети. Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В. Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)

Принципиальная схема соединения электролитических конденсаторов для использования их в качестве пусковых конденсаторов.

Общая емкость соединенных конденсаторов составит (С1+С2)/2.

На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя по табл. 1

Таблица 1. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.

Мощность трехфазного двигателя, кВт

0,4

0,6

0,8

1,1

1,5

2,2

Минимальная емкость рабочего конденсатора Ср, мкФ

40

60

80

100

150

230

Минимальная емкость пускового конденсатора Ср, мкФ

80

120

160

200

250

300

Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20…30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, то в этом случае емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.

Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой – 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В.

Для запуска электродвигателей различных серий, мощностью около 0,5 кВт, от однофазной сети без реверсирования, можно собрать переносной универсальный пусковой блок (рис. 3)

Принципиальная схема переносного универсального блока для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В без реверса.

При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1 к сети 220 В. Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1. После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1. Остановка двигателя осуществляется нажатием на кнопку SB2.

Детали.

В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об/мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 – спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 – проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.

Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4)

1- корпус

2 – ручка для переноски

3 – сигнальная лампа

4 – тумблер отключения

пускового конденсатора

5 -кнопки "Пуск” и "Стоп”

6 – доработанная электровилка

7- панель с гнездами разъема

На верхней панели корпуса расположены кнопки "Пуск” и "Стоп” – сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для подключения электродвигателя.

Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5)

Принципиальная схема пускового устройства с автоматическим отключением пускового конденсатора.

При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 – пусковой конденсатор Сп. Магнитный пускатель КМ1 само блокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети. Кнопку "Пуск” держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме. Для остановки электродвигателя следует нажать кнопку "Стоп”. В усовершенствованном пусковом устройстве по схеме рис.5, можно использовать реле типа МКУ-48 или ему подобное.

2. Использование электролитических конденсаторов в схемах запуска электродвигателей.

При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки. Схема эквивалентной замены обычного бумажного дана на рис. 6

Принципиальная схема замены бумажного конденсатора (а) электролитическим (б, в).

Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости. Например, если в схеме для однофазно сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене, по вышеприведенной схеме, можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

2.1. Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов.

Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.

mirznanii.com

Pабота трехфазного двигателя в однофазной сети

электроника для дома

В радиолюбительском практике  очень часто используются  3-фазные электродвигатели. Но для их питания совсем необязательно наличие трехфазной сети. О некоторых вариантах запуска электродвигателей, включенных в однофазную сеть, читатели узнают ниже.

 

Наиболее простым способом запуска 3-фазного двигателя является раскручивание ротора с помощью шнура длиной около метра, предварительно намотанного на вал. Такой способ неудобен и применяется там, где двигатель запускается без нагрузки.

При наличии двух одинаковых пли близких по мощности электродвигателей один из них можно использовать в качестве генератора «сдвинутой» фазы. Делается это следующим образом. Двигатели включаются по схеме, изображенной на рис. 1. Один из двигателей запускают, например, первым способом и после разгона оставляют включенным в сеть. Второй двигатель легко запускается при включении рубильника Вк2. Эта схема может быть использована там, где установлено несколько двигателей. Любой работающий двигатель позволяет получить «сдвинутую фазу» для другого двигателя, который требуется включить.

Рис. 1

Наиболее эффективный способ пуска электродвигателя—это подключение третьей обмотки через фазосдвигающий конденсатор.

Для нормальной работы двигателя с конденсаторным пуском емкость конденсатора должна меняться в зависимости от числа оборотов. Поскольку это условие трудно выполнимо, на практике управление двигателем производят двухступенчато. Включают двигатель с расчетной (пусковой) емкостью конденсатора, а после его разгона пусковой конденсатор отключают, оставляя рабочий (см. рис. 2). Пусковой конденса-

Рис. 2

тор отключается центробежными выключателями, вручную или специальными схемами (см. «Радио» № 11, 1969 г.). Рабочая емкость конденсатора для 3-фазного двигателя определяется по формуле

если обмотки соединены по схеме «звезда» (рис. 2, а), или

если обмотки соединены по схеме «треугольник» (рис. 2, б). При известной мощности электродвигателя, ток можно определить из выражения

где Р — мощность двигателя, указанная в паспорте (на щитке), вт;

U — напряжение сети, в;

cos φ — коэффициент мощности;

η — к. п. д.

Емкость пускового конденсатора определяется из соотношения

В целях упрощения расчета приводится таблица выбора емкости конденсатора в зависимости от схемы соединения обмоток при напряжении сети 220 в.

Рабочее напряжение конденсаторов должно быть в 1,5 раза больше напряжения сети, а конденсатор обязательно бумажным. В качестве пусковых могут быть использованы и электролитические конденсаторы с рабочим напряжением 450 в (схема соединения на рис. 3). При таком включении корпус конденсаторов находится под напряжением, поэтому его нужно изолировать. Электролитические конденсаторы могут работать только кратковременно.

Рис. 3

Для электродвигателя с конденсаторным пуском существует очень простая схема реверсирования. При переключении переключателя Вк1(рис. 2) двигатель меняет направление вращения.

Эксплуатация двигателей с конденсаторным пуском имеет некоторые особенности. При работе электродвигателя вхолостую по обмотке,

Мощность ЭЛ. двиг., паспортная, Вт

Емкость конденсатора при соединений обмоток электродвигателя в

звезду

треу

голь

ник

звезду

треу

голь

ник

рабочая, мкф.

пусковая,

мкф

10

0,6

1,0

1,8

3,0

15

0,9

1, 5

2,7

4,5

20

1,2

2,0

3,6

6,0

25

1.5

2,5

4,5 ,

7,5

30

1,8

3,0

5,4

9,0

40

2,4

4,0

7,2

12

50

3,0

5,0

9,0

15

60

3,6

6,0

10,8

18

70

4,2

7,0

12,6

21

80

4 ,8

8,0

14,4

24

90

5,4

9,0

16,2

27

100

6,0

10,4

18

31,2

120

7,2

12,4

21,6

37

180

11

18

22

55

250

15

25

45

75

270

16

27

49

81

300

18

31

54

93

400

24

40

72

120

500

30

50

90

150

600

36

60

108

180

800

48

8 0

144

240

1000

60

104

180

312

 

питаемой через конденсатор, протекает ток на 20—40% больше номинального. Поэтому при работе двигателя с недогрузкой нужно уменьшать рабочую емкость.

На отключенном пусковом конденсаторе остается электрический заряд, поэтому для разряда его нужно за-шунтировать резистором 150— 200 ком.

При перегрузке двигатель может остановиться, для его запуска необходимо снова включить пусковой конденсатор.

Инж. В. ПОЦЕЛУЕВ, РАДИО № 11 1970 г.

Читайте также : Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети

 

radiopolyus.ru

Самостоятельное подключение трехфазного двигателя к однофазной сети

У домашнего мастера может появиться необходимость подключить асинхронный электродвигатель к обычной электрической сети. Но в бытовой электрической сети имеется всего одна фаза, а для питания асинхронного двигателя нужна трехфазная сеть. Чтобы выйти из данной ситуации, существует несколько вариантов подключения включение трехфазного двигателя в однофазную сеть как с использованием конденсаторов, так и без них.

Схемы подключения и принцип работы трехфазного асинхронного двигателя

Существуют две стандартные схемы подключения асинхронного электродвигателя, это «треугольник» и «звезда». Эти два способа подключения имеют свои особенности:

  • При включении электродвигателя по схеме «звезда» токи в обмотках будут сравнительно небольшими, что позволяет ему выдерживать длительные нагрузки. При этом мотор выдаёт не очень большой крутящий момент;
  • При включении электродвигателя по схеме «треугольник» токи в обмотках будут максимальными, поэтому он выдаёт большой крутящий момент на валу и его можно использовать под большой нагрузкой. Однако для работы на протяжении длительного времени ему требуется хорошее охлаждение.

Асинхронный электромотор имеет три обмотки, на каждую из которых, в трехфазной сети, подаётся отдельная фаза. В трехфазной сети фазы смещены на 120 градусов, то есть за оборот на треть окружности отвечает отдельная фаза. Благодаря этому магнитное поле равномерно перемещается по кругу, и вращение электродвигателя происходит плавно, без пульсаций.

При подключении такого электродвигателя к обычной бытовой электрической сети в одной обмотке появится пульсирующее электромагнитное поле, которое не сможет создать крутящий момент. Чтобы трехфазный электродвигатель смог работать нужно сместить фазы на его обмотках.

Конденсаторные схемы подключения трехфазного двигателя в однофазную сеть

Чтобы обеспечить необходимый для пуска мотора сдвиг фаз можно использовать конденсатор. Такая схема подключения трехфазного электромотора является самой распространённой из-за своей простоты.

Расчёт ёмкости

В зависимости от того по какой схеме подключён ваш электродвигатель «звезда» или «треугольник» оптимальная ёмкость будет разной.

При подключении по схеме «звезда» ёмкость рассчитывается по формуле: C=2800*I/U;

Если двигатель включён по схеме «треугольник» ёмкость определяется по такой формуле: C=4800*I/U.

Где U – напряжение двухфазной сети в вольтах.

I – штатный ток фазы.

Штатный ток фазы можно измерить при помощи токоизмерительных клещей или найти в технических характеристиках вашего мотора.

Ток фазы можно рассчитать по формуле: I=P/(1.73*U*η*cos(ф)).

Где P – мощность электромотора кВт;

η – коэффициент полезного действия асинхронного двигателя;

cos(ф) – коэффициент мощности. Его можно найти на табличке двигателя или в его паспорте.

На практике иногда используется упрощённая формула для расчёта ёмкости при подключении по схеме «треугольник»: С=66*Р, где Р – мощность электромотора в киловаттах. Хотя расчёты по данной формуле могут давать небольшую погрешность, но это не сильно влияет на работу двигателя.

Если пуск двигателя осуществляется под нагрузкой необходимо на время запуска электродвигателя подключить пусковую ёмкость. Его ёмкость должна быть в 2,5 – 3 раза больше ёмкости рабочего.

Определить, правильно ли вы определили ёмкость можно по результатам работы электромотора. В том случае, если ёмкость больше оптимальной температура мотора будет слишком высокой, и он может выйти из строя. При низкой ёмкости электродвигатель не сможет развить достаточную мощность. Можно подбирать конденсаторы, включив сначала небольшую ёмкость и увеличивая их ёмкость, пока ваш электродвигатель не начнёт развивать требуемую мощность. При таком способе подбора ёмкости будет нелишним контролировать ток в обмотках при помощи измерительных клещей. Измерение тока нужно проводить в рабочем режиме работы мотора.

Выбор конденсаторов

Обычно, для подключения асинхронного электромотора к однофазной сети используют металлобумажные конденсаторы МБГП, МПГО, МБГО или КБП. Единственным их недостатком являются то, что они имеют сравнительно большие габариты при небольшой ёмкости.

Сейчас можно купить металлизированные полипропиленовые конденсаторы модели СВВ, которые при большой ёмкости имеют маленькие размеры. Этот тип имеет высокую надёжность и хорошо зарекомендовал себя в работе.

Помимо ёмкости, следует также обратить внимание на напряжение, на которое они рассчитаны. Покупать конденсатор, рассчитанный на большое напряжение, не стоит из-за их высокой стоимости и больших габаритов. Если подключить конденсаторы, рассчитанные на напряжение меньше действующего, то они очень быстро выйдут из строя. Максимальное напряжение должно быть в 1,5 – 2 раза выше чем напряжение электрической сети. Например, для бытовой сети 220 вольт напряжение конденсатора должно быть больше 1,5*220= 330 вольт, а лучше выбирать конденсаторы, рассчитанные на 400 – 450 вольт.

Если вы не можете найти конденсатор нужной ёмкости, то можете соединить параллельно несколько конденсаторов меньшей ёмкости. При параллельном соединении ёмкости складываются. Например, чтобы получить ёмкость 20 микрофарад нужно соединить параллельно два конденсатора по 10 микрофарад.

Бесконденсаторные схемы подключения трехфазного двигателя в однофазную сеть

Существует несколько схем, как подключить трехфазный двигатель в однофазной сети без конденсаторов. При использовании таких схем можно сэкономить на покупке достаточно дорогих конденсаторов, однако они достаточно сложны и намного менее популярны по сравнению с ёмкостными схемами.

Обычно в бесконденсаторных схемах используются симисторы и они требуют тщательной отладки и подгонки.

Одна из таких схем была напечатана в журнале «Сигнал» номер 4 за 1999 год. В этой схеме симистор служит для сдвига тока по фазе, в одной из обмоток, на величину от 50 до 70 градусов и тем самым обеспечивает необходимых для пуска крутящий момент. Для сдвига фаз имеется RC-цепочка. Подбирая сопротивление в данной цепочке, можно получить напряжение, сдвинутое на требуемый угол.

Динистор играет роль ключевого элемента в данной схеме. Когда напряжение на фазосдвигающей цепочке достигнет требуемого уровня, динистор подключит RC цепочку к выводу симистора и включит его. Таким образом, напряжение, сдвинутое по фазе на нужный угол, поступит на электродвигатель. При подключении электромотор в данной схеме включён по схеме «треугольник».

Заключительные моменты

Что ещё следует знать о том, как подключить трехфазный двигатель в однофазную сеть:

  • Подключить трехфазный электромотор к однофазной сети достаточно и многие инженеры и домашние умельцы предлагают свои новаторские схемы;
  • Несмотря на наличие множества разнообразных схем, они не могут обеспечить стопроцентное использование мощности мотора из-за потерь электроэнергии при преобразовании напряжения. Трехфазный электродвигатель в однофазной сети работает с большими затратами электроэнергии и пониженным коэффициентом полезного действия;
  • Мощность трехфазного электромотора при подключении к однофазной сети снижается до 70-80 % от номинальной;
  • Использование оборудования с таким приводом на протяжении длительного времени не экономически невыгодна из-за больших затрат энергии;
  • Этот способ можно применять для подключения оборудования на короткий промежуток времени;
  • Чтобы заставить электромотор вращаться в обратную сторону нужно подключить пусковой конденсатор к другой обмотке;
  • Подключать асинхронный электромотор следует к трехфазной сети. Если такой возможности нет, нужно купить инверторный преобразователь. Хотя такой преобразователь стоит достаточно дорого, при длительной эксплуатации он окупит себя.
  • Для бытовых нужд лучше подойдёт однофазный мотор. Он дешевле в работе и способен справиться с возложенными на него обязанностями.

remontoni.guru

Подключение электродвигателя на три фазы

С полным правом можно сказать, что электрические двигатели являются основой современной цивилизации. При существующем уровне прогресса они представляют собой один из наиболее эффективных решений для преобразования одного вида энергии в другой. Электродвигатели настолько широко распространены, что иногда, глядя на то или иное устройство, невозможно даже предположить, что в нем используется какая-либо разновидность электромотора. Например, мало кто знает, что в некоторых мобильных телефонах режим вибрации реализуется благодаря вращению вала компактного двигателя с установленным на нем эксцентриком. Неудивительно, что еще меньшее число людей знает, как выполняется подключение электродвигателя. Хотя, откровенно говоря, ничего сложного в этом нет. Чтобы разобраться, как производится подключение электродвигателя, нет необходимости оканчивать электротехнические курсы или вникать в особенности взаимодействия магнитных полей внутри корпуса устройства.

Засучим рукава…

Подключение электродвигателя начинается вовсе не с подачи напряжения на выводы, а с осмотра спецификации устройства. На любом электромоторе (если, конечно, он не побывал в руках вандалов и не эксплуатировался в агрессивной среде) всегда присутствует небольшая табличка, в которой указаны тип, КПД, величина напряжения и тока, номинальная скорость вращения вала и пр. Если проигнорировать эти данные и выполнить подключение электродвигателя, то вполне возможно повреждение источника питания, проводников или самого мотора.

Один из ключевых моментов – мощность (в киловаттах). Ее величина влияет на сечение жилы провода, которым будет подводиться напряжение. Зависимость сечения проводника от тока и мощности приводится в специальной таблице (можно найти в ПУЭ).

Решения для переменного тока

Так как более широко распространены асинхронные двигатели, то дальше мы рассмотрим именно их. Открыв крышку борна (клеммная коробка), можно увидеть диэлектрическую колодку с рядом выводов. У двигателей, рассчитанных на трехфазные сети, контактов может быть 3 или 6. В первом случае подключение простое: на каждый вывод подводится фаза (380 В), а при необходимости изменить вращение две любые из них нужно поменять местами.

Схема электродвигателя с 6 выводами более гибкая. Обычно на табличке в колонке «Напряжение» указано сразу два значения: 220 и 380 Вольт (или 380 и 660). Это означает, что в зависимости от способа подвода питания потенциал на обмотках будет различным. Их существует два варианта: «треугольником» и «звездой». Внутри двигателя три обмотки, начала и концы которых, соответственно, обозначаются С1-с4, С2-с5, С3-с6. На табличке всегда указано соответствие подключения напряжению, то есть, 220/380 при «треугольник/звезда» означает, что схема соединения внутренних обмоток, например, в звезду, применяется для сети 380 В. Путать это не следует, если, конечно, не хочется проводить внеплановый ремонт электродвигателя.

Соединяем выводы

Предположим, что нужное напряжение выбрано. По табличке определяем схему соединения. Остается правильно установить перемычки между выводами и подвести напряжение. Для звезды следует установить мостики между контактами С4-С5-С6, а к С1, С2 и С3 подключить разноименные фазы. Для треугольника схема иная: перемычки ставятся между С3-С5, С2-С4 и С1-С6. В двухпроводной сети третью «фазу» можно получить с помощью включения вспомогательного конденсатора. Эта схема широкодоступна, поэтому здесь не рассматривается.

Каждый из способов соединение внутренних обмоток обладает своими особенностями: на одной большие токи и мощность, а на другой плавная работа. Выбирать нужную схему следует, исходя из возможностей сети и задач, решаемых с помощью электропривода.

fb.ru