- Наружное утепление стен
- Фасадные работы
- Ремонт рустов
- Ремонт температурных швов
- Кровельные работы
- Ремонт дымоходов
- Промышленный альпинизм
- Ремонт входных групп
- Капитальный и косметический ремонт подъездов
- Ремонт ГВС ХВС
- Площадки для ТБО
- Металлоконструкции
- Уборка снега
- Полезная информация
- Благотворительность
- Отзывы
Расчет систем отопления excel программы. Гидравлический расчет системы водяного отопления. Гидравлический онлайн расчет системы отопления
постановка задачи, порядок выполнения расчета, ошибки и способы их исправления
От правильного выбора всех элементов системы водяного отопления, их установки, во многом зависит эффективность её работы, сроки безаварийной и экономичной эксплуатации. Насколько экономичным и эффективным будет отопление в доме, покажут уже начальные вложения средств на этапе установки и монтажа системы. Рассмотрим подробнее как осуществляется гидравлический расчет систым отопления, с целью определения оптимальной мощности отопительной системы.
Эффективность системы отопления «на глазок»
Во многом суммы таких затрат зависят от:
- требуемых диаметров трубопроводов
- фитингов и соответствующих им приборов отопления
- переходников
- регулировочной и запорной арматуры
Желание минимизировать такие затраты не должно идти в ущерб качеству, но принцип разумной достаточности, некий оптимум, должен выдерживаться.
В большинстве современных индивидуальных отопительных комплексов применяются электронасосы для обеспечения принудительной циркуляции теплоносителя, в качестве которого часто используются незамерзающие составы антифризов. Гидравлическое сопротивление таких систем отопления для разных их типов теплоносителей будет разным.
Учитывая постоянно растущую стоимость энергоносителей (все виды топлива, электроэнергия) и расходных материалов (теплоносители, запчасти и пр.), следует с самого начала стремиться заложить в систему принцип минимизации расходов на эксплуатацию системы. Опять же, исходя из их оптимального соотношения для решения задачи создания комфортного температурного режима в отапливаемых помещениях.
Разумеется, соотношение мощности всех элементов отопительной системы должны обеспечивать оптимальный режим подачи теплоносителяк приборам отопления в объёме достаточном для выполнения основной задачи всей системы — обогрева и поддержания заданного температурного режима внутри помещения, независимо от изменения наружных температур. К элементам отопительной системы относятся:
- котел
- насос
- диаметр труб
- регулировочная и запорная арматура
- тепловые приборы
Помимо того, очень неплохо, если в проект изначально будет заложена определённая «эластичность», допускаюшая переход на иной вид теплоносителя (замена воды на антифриз). Кроме того, отопительная система, при меняющихся режимах эксплуатации никоим образом не должна вносить дискомфорт во внутренний микроклимат помещений.
Гидравлический расчёт и решаемые задачи
В процессе выполнения гидравлического расчёта отопительной системы, решается достаточно большой круг вопросов обеспечения выполнения приведенных выше и целого ряда дополнительных требований. В частности, находится диаметр труб на всех секторах по рекомендованным параметрам, включающим определение:
- скорости движения теплоносителя;
- оптимального теплообмена на всех участках и приборах системы, с учётом обеспечения его экономической целесообразности.
Учитывая разветвлённость современных отопительных систем и конструктивные требования реализации наиболее распространённых схем разводки, например, примерное равенство длин ветвей в коллекторной схеме, расчёт гидравлики даёт возможность учесть такие особенности. Это позволит обеспечить более качественную автобалансировку и увязку ветвей, включенных параллельно или по другой схеме. Такие возможности часто требуются в ходе эксплуатации с применением запорных и регулирующих элементов, в случае необходимости отключения или перекрытия отдельных веток и направлений, при возникновении необходимости работы системы в нестандартных режимах.
Подготовка выполнения расчёта
Проведению качественного и детального расчёта должны предшествовать ряд подготовительных мероприятий по выполнению расчётных графиков. Эту часть можно назвать сбором информации для проведения расчёта. Являясь самой сложной частью в проектировании водяной отопительной системы, расчёт гидравлики позволяет точно спроектировать всю её работу. В подготавливаемых данных обязательно должно присутствовать определение требуемого теплового баланса помещений, которые будут обогреваться проектируемой отопительной системой.
В проекте расчёт ведётся с учётом типа выбранных приборов отопления, с определёнными поверхностями теплообмена и размещения их в обогреваемых помещениях, это могут быть батареи секций радиаторов или теплообменники других типов. Точки их размещения указываются на поэтажных планах дома или квартиры.
Принимаемая схема конфигурирования системы водяного отопления должна быть оформлена графически. На этой схеме указывается место размещения генератора тепла (котёл), показываются точки крепления приборов отопления, прокладка основных подводящих и отводящих магистралей трубопроводов, прохода веток приборов отопления. На схеме подробно приводится расположение элементов регулирующей и запорной арматуры. Сюда входят все виды устанавливаемых кранов и вентилей, переходных клапанов, регуляторов, термостатов. В общем, всего, что принято называть регулирующей и запорной арматурой.
После определения на плане требуемой конфигурации системы, её необходимо вычертить в аксонометрической проекции по всем этажам. На такой схеме каждому отопительному прибору присваивается номер, указывается максимальная тепловая мощность. Важным элементом, также указываемым для теплового прибора на схеме, является расчётная длина участка трубопровода для его подключения.
Обозначения и порядок выполнения
На планах обязательно должно быть указано, определённое заранее, циркуляционное кольцо, называемое главным. Оно обязательно представляет собой замкнутый контур, включающий все отрезки трубопровода системы с наибольшим расходом теплоносителя. Для двухтрубных систем эти участки идут от котла (источника тепловой энергии) до самого удалённого теплового прибора и обратно к котлу. Для однотрубных систем берётся участок ветки — стояка и обратной части.
Единицей расчёта является отрезок трубопровода, имеющий неизменный диаметр и ток (расход) носителя тепловой энергии. Его величина определяется исходя из теплового баланса помещения. Принят определённый порядок обозначения таких отрезков, начиная от котла (источника тепла, генератора тепловой энергии), их нумеруют. Если от подающей магистрали трубопровода есть ответвления, их обозначение выполняется заглавными буквами в алфавитном порядке. Такой же буквой со штрихом обозначается сборная точка каждой ветки на обратном магистральном трубопроводе.
В обозначении начала ветки приборов отопления указывается номер этажа (горизонтальные системы) или ветки — стояка (вертикальные). Тот же номер, но со штрихом ставится в точке их подключения к обратной линии сбора потоков теплоносителя. В паре, эти обозначения составляют номер каждой ветки расчётного участка. Нумерация ведётся по часовой стрелке от левого верхнего угла плана. По плану определяется и длина каждой ветки, погрешность составляет не более 0,1 м.
На поэтажном плане отопительной системы по каждому её отрезку считается тепловая нагрузка, равная тепловому потоку, переданному теплоносителем, она принимается с округлением до 10 Вт. После определения по каждому прибору отопления в ветке, определяется суммарная нагрузка по теплу на магистральной подающей трубе. Как и выше, тут округление полученных значений ведётся до 10 Вт. После вычислений, каждый участок должен иметь двойное обозначение с указанием в числителе величины тепловой нагрузки, а в знаменателе — длины участка в метрах.
Требуемое количество (расход) теплоносителя на каждом участке легко определяется путём деления количества тепла на участке (скорректированное на коэффициент, учитывающий удельную теплоёмкость воды) на разность температур нагретого и охлаждённого теплоносителя на этом участке. Очевидно, что суммарное значение по всем рассчитанным участкам даст требуемое количество теплоносителя в целом по системе.
Не вдаваясь в детали, следует сказать, что дальнейшие расчёты позволяют определить диаметры труб каждого из участков системы отопления, потери давления на них, произвести гидравлическую увязку всех циркуляционных колец в сложных системах водяного отопления.
Последствия ошибок расчёта и способы их исправления
Очевидно, что гидравлический расчёт является достаточно сложным и ответственным этапом разработки отопления. Для облегчения подобных вычислений разработан целый математический аппарат, существуют многочисленные версии компьютерных программ, предназначенных для автоматизации процесса его выполнения.
Несмотря на это, от ошибок никто не застрахован. Среди наиболее распространённых выбор мощности тепловых приборов без проведения расчёта, указанного выше. В этом случае, помимо более высокой стоимости самих радиаторных батарей (если мощность больше требуемой), система будет затратной, расходуя повышенное количество топлива и требуя более значительных на свое содержание. Проще говоря, в комнатах будет жарко, форточки постоянно открыты и придётся дополнительно оплачивать обогрев улицы. В случае заниженной мощности попытки обогрева приведут к работе котла на повышенной мощности и также потребуют высоких финансовых затрат. Исправить такую ошибку достаточно сложно, возможно потребуется полностью переделывать всё отопление.
Если неверно проведен монтаж радиаторных батарей, эффективность работы всего отопительного комплекса также падает. К таким ошибкам относится нарушение правил установки батареи. Ошибки этой группы могу вдвое снизить теплоотдачу самых качественных тепловых приборов. Как и в первом случае, стремление повысить температуру в помещении, приведёт к дополнительным расходам энергоносителя. Чтобы исправить ошибки установки, зачастую достаточно переустановить и подключить заново радиаторные батареи.
Следующая группа ошибок относится к ошибке определения требуемой мощности источника тепла и приборов отопления. Если мощность котла заведомо выше мощности отопительных приборов, он будет работать неэффективно, потребляя большее количество топлива. Налицо двойной перерасход средств: в момент покупки такого котла и в ходе эксплуатации. Чтобы исправить положение, такой котёл, радиаторы или насос, а то и все трубы системы, придётся менять.
При расчёте требуемой мощности котла, может быть допущена ошибка в определении потерь тепла зданием. В результате мощность генератора тепловой энергии будет завышена. Результатом будет перерасход топлива. Чтобы исправить ошибку, придётся заменить котёл.
Ошибочный расчёт балансировки системы, нарушение требований примерного равенства веток и т. п. может привести к необходимости установки более мощного насоса, позволяющего доставить носитель к дальним приборам отопления в нагретом состоянии. Однако в этом случае возможно появление «звукового сопровождения» в виде гула, свиста и т. п. Если подобные ошибки допущены в системе тёплого водяного пола, то результатом установки мощного насоса может стать «поющий пол».
При ошибках определения требуемого количества теплоносителя или переводе гравитационной системы на принудительную циркуляцию, объём его может оказаться слишком велик, и дальние приборы отопления не будут работать. Как и ранее, попытки решения проблемы увеличением интенсивности прогрева, приведут к перерасходу газа, износу котла. Решить вопрос можно применением нового насоса и гидрострелки, т. е. тепловой пункт придётся всё равно переделывать.
После всего можно однозначно сказать, что проведение гидравлического расчёта системы отопления позволит гарантированно минимизировать расходы на всех этапах проектирования, устройства, монтажа и долговременной эксплуатации высокоэффективной системы водяного отопления.
Пример гидравлического расчета (видео)
Оцените статью: Поделитесь с друзьями!Гидравлический расчет системы отопления excel. Гидравлический расчет системы водяного отопления
Сегодняшняя тема – система водяного отопления и основополагающие принципы ее расчета. Тема фундаментальная. Ознакомившись с материалом, вы получите ключ к пониманию как выполнять расчет водяного отопления любого объекта! Прочитайте очень внимательно...
Всю статью! Я попытался разложить весь материал на элементарные для простоты восприятия «ступени». Делая шаг за шагом по «ступеням» этой своеобразной «лестницы познания», вы сможете легко достичь «вершины»!
Информация, изложенная в этой статье, не является «открытием Америки». Если вам доступно рассказали об этом когда-то преподаватели, или вы прочитали по этой тематике хорошую книгу – и все поняли, то вам, несомненно, повезло. Так случилось, что мне пришлось доходить до понимания этих, в общем-то, элементарных моментов теплотехники через значительное количество книг с иногда противоречивой и запутанной информацией. В большей степени знания пришли через практические опыты на проектируемых и действующих системах отопления завода металлоконструкций, мебельной фабрики, встроенного магазина, двух больших торговых комплексов и десятка более мелких объектов.
Укрупненный расчет в Excel системы водяного отопления.
Рассмотрим принцип действия и расчет водяного отопления на достаточно абстрактном и простом примере. Идеализированные примеры позволяют, не отвлекаясь на рутинные громоздкие, но, по сути, элементарные вычисления, сосредоточить все внимание на главных принципиально важных вещах.
Есть в русском языке заимствованное из английского языка слово «бокс», которое очень хорошо подходит в нашем случае для названия широкого круга объектов. Итак, будем отапливать бокс!
Условия задачи:
Герметичный бокс (коробка, ящик, вагончик, гараж, помещение, здание, корпус, …) в виде параллелепипеда длиной l , шириной b и высотой h заполнен воздухом, температура которого t вр /внутренняя расчетная температура/. Стенки бокса имеют толщину δ и все сделаны из одного материала, имеющего коэффициент теплопроводности λ .
Со всех шести сторон бокс окружает воздушная среда с температурой t н /наружная температура/.
Слово «среда» в данном случае имеет следующий смысл: масса воздуха в боксе и размеры бокса настолько малы по сравнению с массой и размерами окружающей воздушной среды, что любые изменения внутренней температуры воздуха t в никак не могут повлиять на изменени
heatinge.ru
Гидравлический расчет горизонтальной двухтрубной системы отопления
Содержание статьи
Некоторые лица, занимаясь строительством собственного дома, обустраивают систему обогрева в них «на глаз», что категорически недопустимо.
Необходимо учитывать, что каждое строение имеет строго индивидуальные характеристики. Поэтому, для обеспечения комфортного пребывания человека, отопительная система должна обеспечивать поступление тепла в требуемых количествах.
Определить требуемые характеристики системы вашего дома можно, только проведя специальный гидравлический расчет горизонтальной двухтрубной системы отопления. При этом используются специальные программные продукты (при их наличии) и таблицы.
С чего начать расчет гидравлики для горизонтальной двухтрубной отопительной системы?
Начинать расчёты надо «от печки», в прямом смысле слова. Гидравлический расчет двухтрубной системы отопления, можно выполнять только после того, как определено, на каком топливе будет работать установленный у вас котёл.
После этого можно приступать к собственно расчетам, главной целью которых является:
- Определение требуемого количества отопительных приборов и мощности насоса.
- Уточнение количества и суммарной длины трубопроводов, их требуемых диаметров.
- Определение вероятных тепловых потерь.
Все расчёты выполняются по предварительно вычерченной в масштабе схеме отопления, на которую следует нанести все составляющие её элементы, до последнего крана. В дополнение к ней вам потребуются базовые формулы, специальные расчётные таблицы и соответствующая программа (всё это легко найти в интернете).
Порядок выполнения расчётов
Пример гидравлического расчета двухтрубной системы отопления можно найти на специализированных сайтах.
В настоящей статье мы рассмотрим последовательность выполнения расчётов со следующим допущением. Пусть на нашем объекте имеется горизонтальная двухтрубная система обогрева. Указанный вариант наиболее часто встречается при обустройстве СО частных жилых домов общей площадью до 150 м2.
За расчётный объект, в указанном случае, следует принять кольцо трубопровода СО, работающее под максимальной нагрузкой.
Далее определяем требуемое сечение трубопровода и вероятные потери давления, которые могут иметь место во всём контуре СО. Затем определяемся с общей площадью поверхности отопительных приборов, которую можно считать оптимальной.
Гидравлический расчет двухтрубной системы отопления, включающий все вышеперечисленные расчёты, выполняется с использованием программы и таблицы, упомянутых выше. Полученные результаты помогут определить:
- все вероятные сопротивления, которые могут иметь место в будущем контуре отопления;
- точные характеристики температур;
- расход горячей воды в каждой части системы.
Фактически гидравлический расчет горизонтальной двухтрубной системы отопления позволяет вам оптимизировать схему вашей СО уже на стадии проектирования. Что убережёт от излишних расходом и неизбежных, в противном случае, переделок.
Выполнение гидравлического расчёта системы с учётом имеющихся трубопроводов.
Схема системы отопления с открытым расширительным баком и встроенным циркуляционным насосом
Гидравлический расчет горизонтальной двухтрубной системы отопления в данном случае потребует знания основных параметров гидросистемы, включая сопротивление, создаваемое арматурой (гидравлическое), и самими трубами, а так же скорость перемещения и расход горячей воды. Так же необходимо наличие специальной программы, упоминавшейся ранее, и соответствующая таблица.
Поясним, почему нельзя упускать данные показатели. Если скорость движения горячей воды по трубам возрастёт, то это автоматически приведёт к росту показателя гидравлического сопротивления в трубах. Повышение расхода горячей воды приведёт к одновременному росту двух упомянутых выше показателей.
Скорость перемещения теплоносителя показатель гидравлического сопротивления магистрали, при прочих равных условиях, обратно пропорциональны внутреннему диаметру трубопроводов и т.п.
Гидравлический расчет двухтрубной горизонтальной системы отопления позволяет, в процессе анализа выявленных взаимосвязей параметров, получить достоверную картину будущей эффективности и надёжности выбранной схемы отопления.
А это, в свою очередь, позволит вам снизить расходы на закупку требуемых материалов и комплектующих. При расчётах важно не забывать о том, что все гидравлические характеристики являются величинами переменными, поэтому работать с ними необходимо с использованием специальных номограмм.
Гидравлический расчёт варианта схемы двухтрубной системы
Гидравлический расчет двухтрубной системы отопления с нижней разводкой, как возможного варианта системы, включает просчёт вероятного расхода горячей воды. Последний находится в прямой зависимости от тепловой нагрузки, приходящейся на него в момент движения. Указанный критерий имеется как в программе, упомянутой выше, так и в таблице (далее – справочные материалы).
В процессе выполнения упомянутого расчёта определяется расходный уровень горячей воды относительно конкретного участка. А именно, того, на котором фиксируется const расход воды и постоянный внутренний диаметр трубы.
Поясним на примере. Имеем ветку с десятью радиаторами по 1кВт. Гидравлический расчет двухтрубной системы отопления с верхней разводкой в этом случае требует расчёта расхода воды с тем учётом, что будет осуществлён перенос 10 кВт тепла.
Конкретным участком при выполнении расчёта выступает отрез от радиатора, установленного первым по ходутеплоносителя, до теплогенератора. Но только в том случае, что труба на всём участке имеет постоянный диаметр.
Следующий участок находится между 1-ым и 2-ым радиаторами. На этом участке перенос рассчитывается уже для 9 кВт и т.п.
Схема отопительной системы с ЕЦ
Здесь мы проводим гидравлический расчет двухтрубной гравитационной системы отопления. В указанном случае сопротивление считается как для прямой, так и для обратной ветки трубопровода.
Вычисляется расход горячей воды по специальной формуле, приведённой в справочных материалах.
Теплоснабжение имеющихся распределителей
Гидравлический расчет двухтрубной тупиковой системы отопления в указанном случае требует минимальную скорость горячей воды определять пороговым значением, которое для неё составляет (0,2-0,26) м/сек. При меньших скоростях из воды начинает выделяться воздух.
Высока вероятность появления пробок, что, в свою очередь, может привести к отказу СО. Верхним пределом скорости перемещения горячей воды является значение, лежащее в диапазоне (0,6-1,5) м/сек. При превышении указанного показателя в СО возникают гидравлические шумы. Оптимальные значения скорости лежат в диапазоне (0,4-0,7) м/сек
Схема системы от распределителей
Гидравлическим сопротивлением именуется величина потери давления в магистрали на определённом участке. Общее сопротивление вычисляется путем суммирования местных значений и потерь, обусловленных трением теплоносителя в трубопроводе.
Для расчёта указанного показателя также имеется специальная формула в справочных материалах.
Как проводится гидравлический расчет трубопроводов в системе отопления?
В случае, когда гидравлика считается при попутном движении теплоносителя, чтобы выполнить гидравлический расчет двухтрубной горизонтальной системы отопления выбирается кольцо с максимально загруженным стояком. С учётом того, что радиатор при этом находится внизу.
Для тупиковой версии перемещения горячей воды расчеты выполняются для кольца с нижним радиатором для max загруженного из дальних стояков.
Для горизонтальной схемы берётся кольцо с учетом самой загруженной его ветки, проходящей по первому этажу.
Загрузка...vse-otoplenie.ru
Расчет систем отопления excel программы. Гидравлический расчет системы водяного отопления
Сегодняшняя тема – система водяного отопления и основополагающие принципы ее расчета. Тема фундаментальная. Ознакомившись с материалом, вы получите ключ к пониманию как выполнять расчет водяного отопления любого объекта! Прочитайте очень внимательно...
Всю статью! Я попытался разложить весь материал на элементарные для простоты восприятия «ступени». Делая шаг за шагом по «ступеням» этой своеобразной «лестницы познания», вы сможете легко достичь «вершины»!
Информация, изложенная в этой статье, не является «открытием Америки». Если вам доступно рассказали об этом когда-то преподаватели, или вы прочитали по этой тематике хорошую книгу – и все поняли, то вам, несомненно, повезло. Так случилось, что мне пришлось доходить до понимания этих, в общем-то, элементарных моментов теплотехники через значительное количество книг с иногда противоречивой и запутанной информацией. В большей степени знания пришли через практические опыты на проектируемых и действующих системах отопления завода металлоконструкций, мебельной фабрики, встроенного магазина, двух больших торговых комплексов и десятка более мелких объектов.
Укрупненный расчет в Excel системы водяного отопления.
Рассмотрим принцип действия и расчет водяного отопления на достаточно абстрактном и простом примере. Идеализированные примеры позволяют, не отвлекаясь на рутинные громоздкие, но, по сути, элементарные вычисления, сосредоточить все внимание на главных принципиально важных вещах.
Есть в русском языке заимствованное из английского языка слово «бокс», которое очень хорошо подходит в нашем случае для названия широкого круга объектов. Итак, будем отапливать бокс!
Условия задачи:
Герметичный бокс (коробка, ящик, вагончик, гараж, помещение, здание, корпус, …) в виде параллелепипеда длиной l , шириной b и высотой h заполнен воздухом, температура которого t вр /внутренняя расчетная температура/. Стенки бокса имеют толщину δ и все сделаны из одного материала, имеющего коэффициент теплопроводности λ .
Со всех шести сторон бокс окружает воздушная среда с температурой t н /наружная температура/.
Слово «среда» в данном случае имеет следующий смысл: масса воздуха в боксе и размеры бокса настолько малы по сравнению с массой и размерами окружающей воздушной среды, что любые изменения внутренней температуры воздуха t в никак не могут повлиять на изменение температуры воздуха снаружиt н .
Внутрь бокса заведены две трубы, к которым подключен установленный внутри прибор отопления (радиатор, конвектор, регистр). По одной из труб в прибор отопления подается от котла — источника теплоснабжения — горячая вода с температурой t п /температура подачи/. По второй трубе вода, отдавшая часть тепла и остывшая до температуры t о /температура обратки/, возвращается в котел. Расход воды при этом постоянен и равен Gр /расчетный расход теплоносителя/ .
Рассматривать источник теплоснабжения и подводящие теплотрассы мы в этой задаче не будем, а примем, что на входе в бокс всегда тепловой энергии в избытке и мы можем брать ровно столько, сколько необходимо, например, при помощи автоматизированного узла подачи и учета тепловой энергии.
Дополнительно известны коэффициенты теплообмена на внутренних и наружных поверхностях ограждений α1 иα2 .
Задан и показатель нелинейности теплоотдачи приборов системы отопления n .
Схема задачи изображена на рисунке, расположенном ниже этого текста. Передняя стенка бокса условно не показана. Габаритные размеры бокса отличаются от расчетных на величину толщины стенок δ . То есть, расчетные плоскости находятся посередине толщины ограждений!
Требуется:
1. Найти расчетные теплопотери бокса и соответствующую им расчетную мощность системы водяного отопления N р .
2. При заданных расчетных температурах теплоносителяt пр иt ор определить его расчетный расход через системуG р .
3. Рассчитать теплопотери бокса и соответствующую им мощность водяной системы отопления N для температур наружного воздухаt н , отличных от расчетной температурыt нр .
4. Рассчитать температуры теплоносителя – воды – на подаче t п и в обратке t о , которые обеспечат поддержание внутри бокса неизменной расчетной температуры воздуха t вр , при неизменном расчетном расходе G р для различных температур наружного воздуха t н .
Расчет будем выполнять в программе MS Excel или в программе OOo Calc.
С общими правилами форматирования — использования различных цветов для заливки ячеек и окраски шрифтов — таблиц MS Excel и OOo Calc , которые применяются мной во всех файлах с программами, можно ознакомиться на странице « ».
Исходные данные:
1. Длину бокса l (м) заносим
в ячейку D3: 10,000
2. Ширину бокса b (м) записываем
в ячейку D4: 5,000
3. Высоту бокса h (м) вводим
в ячейку D5: 3,000
4. Толщину стенок бокса δ (м) вписываем
в ячейку D6: 0,250
При разности температур воздуха внутри бокса и снаружи начинается теплообмен, который включает в себя три этапа: передачу тепла от внутреннего воздуха внутренней стенке ограждения (характеризуется коэффициентом α1 ), передачу тепла через материал стенки (характеризуется коэффициентом λ ) и передачу тепла наружному воздуху от внешней стенки ограждения (характеризуется коэффициентом α2 ).
5. Коэффициент теплообмена на внутренней поверхности ограждения α 1 (Вт/(м2*˚С)) заносим
в ячейку D7: 8,700
6. Коэффициент теплопроводности материала ограждения (древесина – сосна) λ (Вт/(м*˚С)) заносим
в ячейку D8: 0,140
7. Коэффициент теплообмена на внешней поверхности ограждения α 2 (Вт/(м2*˚С)) заносим
в ячейку D9: 23,000
Термин «расчетная» температура внутреннего или наружного воздуха не означает, что их нужно рассчитывать. Он означает, что эти температуры задаются для расчетов, являются исходными данными для последующих расчетов!
8. Итак, мы хотим поддерживать внутри бокса неизменную температуру воздуха t вр (˚С). Записываем
в ячейку D10: 20,0
9. Расчетную температуру наружного воздуха (в данном примере — для г. Омска) t нр (˚С) вписываем
в ячейку D11: -37,0
Зная характеристики теплоисточника, записываем расчетные параметры теплоносителя, которые должны быть выданы при расчетной температуре наружного воздуха!
10. Расчетную температуру воды на подаче t пр (˚С) вводим
в ячейку D12: 90,0
11. Расчетную температуру воды на обратке t ор (˚С) вводим
в ячейку D13: 70,0
Различные приборы, применяемые для систем отопления, – батареи, радиаторы, регистры, конвекторы – имеют различную теплоотдачу при разных схемах подключения и разных температурных режимах. Коэффициент n характеризует нелинейность теплоотдачи каждого конкретного типа прибора и определяется заводом-изготовителем. Чем больше коэффициент n , тем быстрее уменьшается теплоотдача пр
arightheat.ru
Гидравлический расчет системы отопления - В доме теплее
Гидравлический расчет системы отопления
В последнее время автономная отопительная система становится все более востребованной. Большинство владельцев квартир отказываются от централизованного отопления, считая индивидуальную систему более надежной и качественной. При этом довольно часто основной причиной выбора именно автономной системы отопления становится ее доступность и экономичность. Конечно, изначально на приобретение необходимого оборудования и монтаж системы придутся потратиться. Однако все затраты окупаются довольно быстро, поскольку в дальнейшем обслуживание такой системы обходится значительно дешевле, чем ежемесячная оплата централизованного отопления. Конечно, экономичность автономной системы достигается только в том случае, если она была правильно подобрана и установлена. В связи с этим огромное значение приобретает гидравлический расчет системы отопления, который необходимо проводить заранее.
Для чего он нужен?
Прежде всего, следует понимать, что старая программа контроля функционирования отопительной системы значительно отличается от современной именно по причине различного осуществления гидравлического режима. Помимо этого, современные отопительные системы отличаются использованием более качественных материалов и технологий монтажа – что также отображается на их себестоимости и экономичности. Более того, современная система позволяет совершать контроль на всех этапах и замечает даже незначительное колебание температуры.
Аксонометрическая схема системы отопления коттеджа – первые этап гидравлического расчета
Можно сделать простой вывод: применение более качественной, модернизированной современной системы позволяет значительно снизить уровень энергопотребления, что, в свою очередь, ведет к повышению экономичности системы. Однако не следует самостоятельно монтировать отопительную систему, поскольку этот процесс требует специальных знаний и навыков. В частности, нередко проблемы возникают из-за неправильно установленного каркаса и отказа от проведения гидравлического расчета системы отопления. Что же важно учитывать при монтаже системы:
- только в случае правильно выполненного монтажа будет осуществляться равномерная подача теплоносителя ко всем элементам системы. А этот показатель – залог равновесия между регулярно изменяющейся температурой воздуха снаружи и внутри помещения.
- минимизация затрат на эксплуатацию системы (в особенности – топливной) приводит к тому, что значительно снижается гидравлическое сопротивление системы отопления.
- чем больше диаметр используемых труб – тем выше будет себестоимость отопительной системы.
- система должна быть не только надежной и качественно установленной. Важным фактором является и ее бесшумность.
Какую информацию получаем после того, как сделан гидравлический расчет отопления:
- диаметр труб, применимый на различных участках системы для ее максимально эффективной работы;
- гидравлическая устойчивость системы отопления в разных сегментах отопительной системы;
- тип гидравлической связки трубопровода. В некоторых случаях для достижения максимального равновесия отдельных процессов используется специальный каркас.
- расход и давление теплоносителя во время циркуляции в отопительной системе.
Конечно, расчет гидравлического сопротивления системы отопления является довольно затратным процессом. Однако следует учитывать то, что правильность его проведения дает возможность получения максимально точной информации, необходимой для создания качественной отопительной системы. Поэтому наиболее правильным является привлечение специалиста, а не попытка произвести данный расчет самостоятельно.
Пример рабочей схемы в программе при выполнении гидравлического расчета
Перед тем, как будет проведен гидравлический расчет системы отопления онлайн, следует получить такие данные:
- равновесие показателей тепла во всех помещениях, которые необходимо будет отапливать;
- наиболее подходящий тип отопительных приборов, прорисовать на предварительном плане отопительной системы их детальное расположение;
- определение типа и диаметра используемых для монтажа системы труб;
- разработка плана запорного и направляющего каркасов. Помимо этого, важно до мелочей продумать расположение в системе всех элементов – от генераторов тепла до вентилей, стабилизаторов давления и датчиков контроля уровня температуры теплоносителя;
- создание максимально детального плана системы, на котором будут указаны все ее элементы, а также длина и нагрузка сегментов;
- определить расположение замкнутого контура.
Пример таблицы с полученными данными гидравлического расчета
Пример расчета гидравлики отопления
Приведем пример гидравлического расчета системы отопления. Возьмем отдельный участок трубопровода, на котором наблюдается стабильная потеря тепла. Диаметр труб не меняется.
Определить этот участок следует, основываясь на данных о тепловом балансе помещения, в котором он находится. Важно помнить – нумерация участков начинается от источника тепла. Помечаем связующиеузлы, присутствующие на подающем участке магистрали прописными буквами.
Принципиальная схема отопления
В случае, если на магистрали присутствуют узлы – их следует пометить небольшим штрихом. Используем арабские цифры для определения узловых точек, которые присутствуют в участках ответвления. При горизонтальной отопительной системе каждая из точек соответствует номеру этажа здания. В случае применения вертикальной системы значение точки соответствует значению стояка. Узлы, в которых происходит сбор потока, также следует отмечать штрихами. Следует отметить, что номера непременно должны состоять из двух цифр. Первая из них означает начало участка, ну а вторая, соответственно, – конец.
В случае применения вертикальной системы нумерацию стояков следует проводить арабскими цифрами, следуя при этом по часовой стрелке.
Для определения протяженности всех участков трубопровода следует использовать предварительно составленную детальную план-смету. При ее создании следует придерживаться точности 0,1 м. При этом тепловой поток участка, в котором происходят вычисления, равен тепловой нагрузке, отдаваемой теплоносителем в данном сегменте системы.
Показатели гидравлического расчета расчетного циркуляционного контура с учетом потерь давления на местные сопротивления на участках
Использование программ
В процессе моделирования новой постройки, наиболее рациональным является использование специальной программы, которая максимально точно определяет тепловые и гидравлические характеристики будущей отопительной системы. А можно использовать программу excel. При этом программа предоставляет такие данные:
- необходимый диаметр трубопровода;
- размер отопительных устройств;
- тип регулирования вентилей балансировки;
- уровень настройки регулировочных вентилей;
- уровень предварительного регулирования термостатических клапанов;
- настройку датчиков колебания давления в системе.
Конечно же, непосвященному пользователю будет крайне сложно провести самостоятельно расчет и гидравлическое испытание системы отопления. Наиболее правильным вариантом является обращение к специалисту, который имеет достаточный опыт в данной сфере. В случае, когда возможности привлечения профессионала нет, следует внимательно ознакомиться с методической литературой, в которой максимально детально описывается процесс проведения гидравлического расчета.
Дек 20, 2015Alex
Похожие статьи:
[Всего голосов: 2 Средний: 5/5]vdometeplee.ru
Гидравлический расчет систем отопления. Отопление в частном доме
Современная система отопления – это демонстрация абсолютно нового подхода к ее регулированию. На сегодняшний день это не предварительная наладка перед запуском системы с облегчением последующего гидравлического режима функционирования. Современное отопление в частном доме в процессе работы имеет постоянно изменяющийся тепловой режим. Что требует от оборудования не только отслеживать изменения при обогреве помещения, но и правильно на них реагировать.
Условия для эффективной работы системы
Существуют некоторые моменты, соблюдение которых позволит обеспечить качественную и эффективную работу системы отопления:
- Подача теплоносителя в нагревательные приборы должна производиться в тех количествах, которые будут обеспечивать тепловой баланс помещения, при условии постоянно меняющейся наружной температуры и в зависимости от температурного режима помещений, определенного ее владельцем.
- Снижение затрат, в том числе энергетических, для преодоления гидравлического сопротивления.
- Снижение материальных затрат при монтаже системы отопления, зависящих также от диаметра прокладываемых трубопроводов.
- Низкий уровень шума, стабильность и надежность работы отопительных устройств.
Как правильно рассчитать систему отопления
Чтобы рассчитать отопление в частном доме, требуется знать необходимое количество тепла. С этой целью рассчитываются тепловые потери всего дома в теплое и холодное время года. Сюда относятся теплопотери через оконные, дверные проемы, ограждающие конструкции и т. д. Это довольно кропотливые расчеты. Принято считать, что в среднем источник тепла должен производить 10 кВт на 100 м2 отапливаемой площади.
Под отопительной системой понимают взаимосвязь между совокупностью приборов: трубопроводы, насосы, запорно-регулирующее оборудование, средства контроля и автоматики для передачи тепла от источника непосредственно в помещение.
Типы отопительных котлов
Перед тем как сделать гидравлический расчет систем отопления, необходимо правильно подобрать котел (источник тепла). Различают следующие виды котлов: электрический, газовый, твердотопливный, комбинированный и другие. Выбор в большинстве случаев зависит от топлива, преобладающего в районе проживания.
Электрический котел
Ввиду проблем с подключением мощностей и довольно высокой ценой на электроэнергию данное оборудование не обрело своего широкого распространения.
Котел газовый
Чтобы установить такой котел, ранее требовалось специальное отдельное помещение (котельная). В настоящее время это относится только к оборудованию с открытой камерой сгорания. Подобный вариант наиболее распространен в местах с газификацией.
Твердотопливный котел
При относительной доступности топлива данное оборудование не пользуется высокой популярностью. При его эксплуатации возникают некоторые неудобства. В течение суток необходимо производить несколько раз топку. Кроме того, режим теплоотдачи имеет циклический характер. Применение этих котлов облегчается (уменьшается число топок) путем использования термобаллона или топлива с высокой температурой сгорания, благодаря которому увеличивается время горения за счет регулируемой подачи воздуха. Также это можно производить за счет водяных теплоаккумуляторов, к которым подключается центральное отопление.
Необходимые параметры при расчете мощности
- Wуд – удельная мощность источника тепла (котла), приходящаяся на площадь здания в 10 м2 с учетом климатических условия региона.
- S – площадь отапливаемого помещения.
Также имеются общепринятые значения удельной мощности, которые зависят от климатической зоны:
- Wуд = 0,7-0,9 – для Южного района.
- Wуд = 1,2-1,5 – для Центрального района.
- Wуд = 1,5-2,0 – для Северного района.
Формула для мощности котла
Перед тем как приступить к такому ответственному мероприятию, как гидравлический расчет систем отопления, нужно определить мощность источника тепла по следующей формуле:
Wкот = S×Wуд/10.
Для удобства расчета примем усредненное значение Wуд за 1 кВт, таким образом получаем, что 10 кВт должно приходиться на 100 м2 отапливаемой площади. В результате схемы монтажа системы отопления будут зависеть от площади дома.
В остальных случаях используется принудительная циркуляция теплоносителя при помощи циркуляционных насосов.
Двухтрубная система
Это классический вариант системы отопления, который зарекомендовал себя наилучшим образом за долгое время эксплуатации. Гидравлический расчет двухтрубной системы отопления будет рассмотрен ниже. Почему она так называется? Все дело в том, что основой инженерного замысла послужил монтаж нескольких трубопроводов через этажи здания. К одному стояку с горячей водой подключался по всем этажам нагревательный прибор, а в проложенный рядом трубопровод поступала охлажденная вода из отопительного прибора.
В результате еще не успевший остыть теплоноситель из первого прибора поступал в прибор, который находился этажом ниже, а циркулирующая жидкость имела ту же температуру, что и в первом. Таким образом, температура теплоносителя в первом и последнем трубопроводах была идентичной – это означает, что одинаковой была и теплоотдача.
Двухтрубная система отопления – преимущества
Центральное отопление в частном доме с двухтрубной системой имеет следующие преимущества:
- На каждом отапливаемом этаже обеспечивается равномерный прогрев всех приборов.
- По сравнению с однотрубной системой, можно полноценно обогреть значительно больше помещений.
- Регулирование температурного режима в каждом конкретном помещении.
Расчетно-графические мероприятия
Выполняя сложный гидравлический расчет систем отопления, в первую очередь необходимо произвести целый ряд предварительных мероприятий:
- Определяется тепловой баланс отапливаемого строения.
- Выбирается тип нагревательных приборов, после чего они схематично размещаются на плане помещения.
- Далее принимается решение по размещению всех отопительных агрегатов, типу и материалам трубопроводов, регулирующих и запорных устройств.
- Чтобы сделать гидравлический расчет систем отопления, потребуется начертить принципиальную схему в аксонометрии с указанием расчетных нагрузок и длин участков.
- Определяется главное кольцо – это замкнутый отрезок, который включает в себя расположенные последовательно участки трубопроводов, имеющие максимальный расход теплоносителя от источника тепла к наиболее удаленному нагревательному прибору.
За расчетный участок принимается тот, который имеет неизменный расход теплоносителя и одинаковое сечение.
Пример гидравлического расчета системы отопления
На расчетном отрезке тепловая нагрузка равна потоку тепла, который на подающем трубопроводе должен передать, а на обратном уже передал циркулирующую жидкость, которая проходила через этот участок.
Расход теплоносителя Gi-j, кг/ч вычисляется по следующей формуле:
Gi-j = 0,86×Qi-j/(t2-t0), где
Gi-j – это количество тепла на расчетном отрезке i-j;
t2-t0 – это расчетные температуры горячей и холодной жидкости соответственно.
Как выбрать диаметр трубопроводов
Чтобы сократить затраты на преодоление сопротивлений во время движения циркулирующей жидкости, диаметры трубопроводов должны располагаться в пределах минимальной скорости теплоносителя, которая требуется для удаления пузырьков воздуха, способствующих появлению воздушных пробок. Чтобы уменьшить их, диаметр трубопроводов приводится к минимальному значению, которое не приводит к гидравлическому шуму в арматуре и трубах системы.
Все трубопроводы производственного изготовления делятся на полимерные и металлические. Первые являются более долговечными, вторые – механически более прочные. Какие трубы использовать в отопительной системе, зависит от ее индивидуальных особенностей.
Гидравлический расчет системы отопления – программа
Учитывая объем работ, который нужно произвести на этапе проектирования, вы можете воспользоваться специализированным программным обеспечением.
Используя исходные данные, программа выполняет автоматический подбор трубопроводов необходимого диаметра, осуществляет предварительную настройку регулирующих и балансировочных вентилей, термостатических клапанов и автоматических регуляторов в отопительной системе. Также программа может самостоятельно оценить, какого размера потребуются нагревательные приборы.
fb.ru
Как сделать гидравлический расчет системы отопления
Создание эффективной и работоспособной системы отопления – задача сложная и под силу только специалистам. Для ее решения необходимо учитывать множество факторов. После составления схемы трубопроводов необходимо выполнить гидравлический расчет системы отопления.
Содержание статьи
Основные задачи гидравлического расчета
Во время движения теплоносителя по трубам отопления возникают многочисленные динамические явления: изменение давления потока, его скорости и температуры на разных участках. Все это сказывается на эффективности работы отдельных отрезков и всей магистрали в целом.
Для оптимизации процесса необходимо сделать гидравлический расчет системы отопления. В итоге главной задачей этого действия является оптимизация системы по теплоотдаче и расходу энергоносителя. Кроме этого, будут улучшены следующие характеристики:
- Подача горячей воды в приборы отопления в достаточном количестве и с должным уровнем нагрева.
- Уменьшение затрат – эксплуатационных и на закупку отдельных элементов.
- Достижение минимального уровня шума за счет стабилизации гидравлического давления на отдельных участках магистрали.
На практике в результате вычисляются оптимальные размеры трубопровода на каждом из отрезков системы, выбираются конкретные виды запорной арматуры. Также определяются значения гидравлических потерь в поворотных и разделительных узлах.
В итоге по окончании вычислений можно будет получить точные эксплуатационные характеристики автономной системы отопления, оптимальный режим ее работы.
Подготовительные мероприятия
Перед выполнением расчетной части необходимо выполнить ряд предварительных расчетов и работ. Прежде всего – составляется схема прокладки трубопроводов с указанием основных узлов и приборов.
Лучше всего делать это сразу в редакторе специализированной программы, так как дальнейшие расчеты будут выполняться автоматически, на основе исходных данных. После начертания схемы прокладки труб и подключения радиаторов следует задать такие характеристики:
- Оптимальный тепловой баланс в каждом из помещений.
- Характеристики оборудования – тип каждого из них, коэффициент сопротивления теплопередачи, параметры регулировочных клапанов и т.д.
- Схема должна представлять собой замкнутый контур.
В зависимости от сложности расчета может понадобиться дополнительная информация – материал изготовления труб, место установки насосного оборудования и т.д. По окончании сбора данных можно приступать непосредственно к выполнению вычислений.
Специализированные программы
До недавнего времени гидравлический расчет выполнялся в ручном режиме. Но с появлением специализированных программ задача значительно упростилась. После ввода в редактор требуемых начальных данных система сама вычислит оптимальные параметры отопления:
- Требуемый диаметр труб.
- Месторасположение запорной и регулирующей аппаратуры, ее характеристики.
- Значение термодинамического давления на определенных отрезках трубопроводов и в отопительных приборах.
- Схемы редукторов для стабилизации давления в зависимости от текущих параметров.
- Показатели нагрева воды в трубах. Особенно это важно при подключении водяного теплого пола. Сохранение теплового баланса в системе должно происходить автоматически.
В настоящее время есть ряд специализированных расчетных комплексов, которые успешно выполняют расчеты гидравлических параметров для различных типов отопления.
Instal-ThermHCR
Программное обеспечение, включающее в себя несколько модулей для вычисления гидродинамических и температурных параметров системы отопления. Помимо этого она в состоянии рассчитать характеристики горячего и холодного водоснабжения.
В условно-бесплатной версии можно определить оптимальный диаметр труб и запорной арматуры, температурные режимы теплоносителя и поверхности приборов обогрева. Также в стандартный набор функций входят все гидродинамические параметры. Однако есть определенные ограничения по количеству узлов, протяженности системы. В бесплатной версии невозможно экспортировать результат в отдельный файл или распечатать.
Кроме этого программного комплекса есть ряд других, которые имеют аналогичные функции. Среди бесплатных приложений можно отметить OventropCO, HerzC.O. и OVplant. В большинстве своем бесплатные версии имеют ограниченный функционал, но для расчета несложной системы отопления его вполне хватает. Покупка лицензии для частного пользования комплексами нецелесообразна.
Оптимальный вариант выполнить точный гидравлический расчет системы отопления – обратиться в специализированную конструкторскую компанию. На основе исходных данных ее специалисты смогут составить точную схему давления теплоносителя, температурный режим работы и параметры оборудования.
dearhouse.ru
Адрес:
603034 Нижний НовгородЛенинский район ул. Ростовская
д.13 офис №2
Телефон:
(831) 216-17-138(987) 544-18-81
email:
[email protected]COPYRIGHT © 2022
Все права защищены