Запуск 3 фазного двигателя от однофазной сети без конденсаторов: Подключаем 3-х фазный электродвигатель без конденсаторов от 220В

Содержание

Пуск электродвигателя без конденсатора

Но иногда возникает необходимость использовать такой двигатель в подсобном хозяйстве. Для этого нужно произвести простой расчёт и выполнить несложный электромонтаж. Как правило, для подключения трёхфазного электродвигателя используют три провода и напряжение питания вольт. В сети вольт только два провода, поэтому, чтобы двигатель заработал, на третий провод тоже нужно подать напряжение. Для этого используют конденсатор, который называют рабочим конденсатором.




Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Как подключить электродвигатель 380В на 220В
  • Подключение 3х фазного двигателя на 220. Запуск 3х фазного двигателя от 220 вольт без конденсаторов
  • Как трехфазный двигатель подключить на 220 без конденсаторов
  • Включение 3-х фазного двигателя в однофазную сеть, от теории к практике
  • Подключаем самостоятельно трехфазный электродвигатель в 220Вт
  • Трехфазный двигатель в однофазной сети без конденсаторного запуска
  • Трехфазный двигатель в однофазной сети без конденсаторов
  • Подключение трехфазного двигателя к однофазной сети
  • Запуск трехфазных электродвигателей с помощью конденсаторов

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Пусковые конденсаторы. Как подобрать и подключить.

Как подключить электродвигатель 380В на 220В



Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода — фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети вольт.

Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности — от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме. В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения.

При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска.

В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней.

Подключение второго ключа — параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока. Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами.

Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора. В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора.

Первый основной выход тумблера подключается к конденсатору, второй — к нулевому, а третий — к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Таким образом, при решении вопроса как подключить трехфазный двигатель к сети вольт, необходимо учитывать все факторы.

Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы. Первый тип в основном используют для моторов продолжительного пуска и работы.

Совместное подключение применяют для пуска высокомощных электродвигателей. При подключении к в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации.

Для перехода со схемы подключения электродвигателя на есть несколько вариантов, каждый из которых отличается преимуществами и недостатками. Очень важно понимать, как подключается трехфазный электродвигатель к сети в. Чтобы трехфазный двигатель подключить к в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки.

Оставшийся конец оставшаяся пара скрученных проводов катушки подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.

От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него в. Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить через кнопку конденсатор.

Он будет в момент пуска давать двигателю толчок, заставляя крутиться. Прозванивание, то есть измерение сопротивления, проводится тестером.

Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены — лампа загорается. Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении. Ниже дан чертеж, чтобы разобраться было легче.

К первому из них —К1 с одной стороны подключается обмотка статора, с другой — ток. При включении К1 с помощью реле времени включается К3. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор.

Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор. Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети.

Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения.

Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.

Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения. Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности то есть отклонение стрелки происходит в ту же сторону должен появляться на двух оставшихся обмотках.

Применение схемы подключения электродвигателя через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником или другим устройством в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.

На контактах 1,2,3 и пусковой кнопке 1 разомкнутой напряжение присутствует в начальный момент. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор. С питающих двигатель проводников и NO исчезает напряжение. Как известно, для запуска трехфазного электродвигателя ЭД с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента применяют конденсатор.

При этом емкость пускового конденсатора должна быть в несколько раз больше емкости рабочей конденсатора. Для ЭД чаще всего применяемых в домашнем хозяйства 0,5…3 кВт , стоимость пусковых конденсаторов соизмерима со стоимость к электродвигателя.

Поэтому желательно избежать применения дорогостоящих пусковых конденсаторов, работающих лишь кратковременно. Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5….

В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.

Первая схема рис. За основу этой схемы была взята схема [1], которая упрощена до предела. Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол.

В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.

Вторая схема рис. В этих случаях требуется значительно больший пусковой момент. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на электрических градусов одна относительно другой. Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.

Так поступают при наладке схемы, показанной на рис.

Подключение 3х фазного двигателя на 220. Запуск 3х фазного двигателя от 220 вольт без конденсаторов

Адрес: Нижний Новгород, Ленинский район, ул. Ростовская д. Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5.

Конденсатор С, обладая емкостным сопротивлением, под действием приложенного к.

Как трехфазный двигатель подключить на 220 без конденсаторов

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода — фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя. Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности — от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

Включение 3-х фазного двигателя в однофазную сеть, от теории к практике

Всем доброго времени суток. Кто запускал трехфазный электродвигатель от однофазной сети без конденсаторов от. Может есть другие идеи или варианты. Если можете скиньте схемы.

Самым прогрессивным методом такого включения является частотный преобразователь. Это исключает многократное превышение номинального пускового напряжения, чем увеличивает долговечность двигателя.

Подключаем самостоятельно трехфазный электродвигатель в 220Вт

Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей. При подключении к в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. Для перехода со схемы подключения электродвигателя на есть несколько вариантов, каждый из которых отличается преимуществами и недостатками. Очень важно понимать, как подключается трехфазный электродвигатель к сети в.

Трехфазный двигатель в однофазной сети без конденсаторного запуска

В домашнем хозяйстве иногда возникает необходимость запустить 3х фазный асинхронный электродвигатель АД. При наличии 3х фазной сети это не составляет трудностей. При отсутствии 3х фазной сети двигатель можно запустить и от однофазной сети, добавив в схему конденсаторы. Конструктивно АД состоит из неподвижной части — статора, и подвижной — ротора. На статоре в пазах укладываются обмотки. Обмотка статора представляет собой трёхфазную обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием эл. Концы и начала обмоток выводятся в соединительную коробку.

Запуск трехфазного двигателя от однофазной сети без конденсатора Майкл Корс Гамильтон, Наушники. Майкл Корс ГамильтонНаушники.

Трехфазный двигатель в однофазной сети без конденсаторов

Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от вольт с пусковыми и рабочими емкостями. Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.

Подключение трехфазного двигателя к однофазной сети

В статье собраны советы, как можно подключить такой электродвигатель в однофазную сеть без использования конденсаторной батареи или частотного преобразователя за счет импульса тока от электронного ключа. Они дополняются схемами и видеороликом. Если собрать обмотки асинхронного электродвигателя по схеме треугольника и подключить к напряжению однофазной сети вольт, то через них станут протекать одинаковые токи, как показано на графике ниже. Угловое смещение любой обмотки относительно других составляет градусов. Поэтому магнитные поля от каждой из них будут складываться, устранять взаимное влияние.

Не все трехфазные электродвигатели хорошо работают при подключении к однофазной сети.

Запуск трехфазных электродвигателей с помощью конденсаторов

Как известно, для запуска трехфазного электродвигателя ЭД с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента применяют конденсатор. При этом емкость пускового конденсатора должна быть в несколько раз больше емкости рабочей конденсатора. Для ЭД чаще всего применяемых в домашнем хозяйства 0, Поэтому желательно избежать применения дорогостоящих пусковых конденсаторов, работающих лишь кратковременно. В тожe время применение рабочих, постоянно включенных фазосдвигающих конденсоторов можно считать целесообразным, так как они позволяют загрузить двигатель на Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы.

Подключение трехфазного двигателя к однофазной сети Начала и концы обмоток различные варианты Схемы подключения трехфазного двигателя в однофазную сеть Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в электрических градусов уложены проводники обмоток, начала и концы которых C1, C2, C3, C4, C5 и C6 выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» концы обмоток соединены между собой, к их началам подводится питающее напряжение или «треугольник» концы одной обмотки соединены с началом другой. Подключение трехфазного двигателя по схеме треугольник.



Запуск 3х фазного двигателя от 220 Вольт

Запуск 3х фазного двигателя от 220 Вольт

 

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

 

 

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Рном ,

где С — емкость конденсатора, мкФ,   Рном — номинальная мощность электродвигателя, кВт.

То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

Cобщ = C1 + C1 + … + Сn

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис.  1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

 

Рис. 2.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

 

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.

 

Рис. 3.   Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С

п

 

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

 

Рис. 4.   Изменение направления вращения ротора однофазного двигателя переключением пусковой обмотки

 

  • Комментарии

Social Comments

Как запустить трехфазный двигатель от однофазного источника питания?

В зависимости от типа источника питания переменного тока асинхронные двигатели делятся на два типа; трехфазный асинхронный двигатель и однофазный асинхронный двигатель. В большинстве промышленных и сельскохозяйственных приложений трехфазный асинхронный двигатель широко используется по сравнению с однофазным асинхронным двигателем.

Из-за нехватки электроэнергии трехфазное питание не всегда доступно в сельском хозяйстве. При этом одна фаза отключается от группового оперативного выключателя (ГОС). Таким образом, в большинстве случаев доступны две из трех фаз. Но при любом особом расположении невозможна работа трехфазного двигателя от однофазного источника питания.

Как известно, трехфазный асинхронный двигатель является двигателем с самозапуском. Так как обмотка статора трехфазного асинхронного двигателя создает вращающееся магнитное поле. Это создаст фазовый сдвиг на 120˚. Но в случае однофазного асинхронного двигателя индуцируется пульсирующее магнитное поле. Следовательно, однофазный асинхронный двигатель не является самозапускающимся двигателем. Для старта требуется дополнительное вспомогательное оборудование.

  • Связанный пост: Что произойдет, если вы подключите 3-Φ асинхронный двигатель к однофазной сети?

То же самое здесь, нам нужно сделать некоторые дополнительные меры, чтобы привести трехфазный асинхронный двигатель в однофазную сеть. Есть три метода;

  • Использование статического конденсатора (метод фазового сдвига)
  • Использование VFD (преобразователь частоты)
  • Использование поворотного преобразователя

В этой статье мы кратко обсудим каждый метод.

Использование статического конденсатора

При подаче трехфазного переменного тока на статор трехфазного асинхронного двигателя создается сбалансированное вращающееся магнитное поле, изменяющееся во времени на 120° друг от друга. Но в случае однофазного асинхронного двигателя индуцируется пульсирующее магнитное поле. И в этом случае начальный крутящий момент (пусковой момент) не создается. В однофазном асинхронном двигателе дополнительная обмотка используется для создания фазового сдвига. Вместо пусковой обмотки также используется конденсатор или дроссель для создания смещения фаз.

Аналогично этому принципу можно использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвинуть одну обмотку с помощью конденсатора или индуктора. После запуска трехфазного асинхронного двигателя от однофазной сети он постоянно работает с пониженной мощностью. Полезная мощность или КПД двигателя снижается на 2/3 rd от его номинальной мощности.

Этот метод также известен как метод статического преобразователя фазы или метод фазового сдвига или метод перемотки .

В некоторых схемах используются два конденсатора; один для запуска, второй для работы. Емкость пускового конденсатора в 4-5 раз выше по сравнению с рабочим конденсатором. Принципиальная схема такого устройства показана на рисунке ниже.

Пусковой конденсатор используется только для запуска. Он отключится от цепи после запуска. Рабочий конденсатор всегда остается в цепи. Здесь, как показано на рисунке, двигатель соединен звездой. И оба конденсатора подключены между двумя фазами обмотки.

Однофазное питание имеет две клеммы. Одна клемма соединена с последовательной комбинацией обмотки, а вторая клемма соединена с оставшейся клеммой трехфазной обмотки. Иногда используется только один конденсатор. Такой тип расположения показан на рисунке ниже.

В большинстве случаев небольшие асинхронные двигатели подключаются по схеме «звезда». Здесь мы взяли трехфазный асинхронный двигатель, соединенный звездой. Для повышения уровня напряжения используется автотрансформатор. Потому что уровень напряжения трехфазного питания составляет 400-440 В, а уровень напряжения однофазного питания составляет 200-230 В для 50 Гц питания.

Мы можем использовать эту схему без использования автотрансформатора. В этом случае уровень напряжения остается на уровне однофазного питания (200-230 В). В этом состоянии двигатель также будет работать. Но поскольку напряжение низкое, крутящий момент, создаваемый двигателем, низкий. Эту проблему можно решить, подключив дополнительный пусковой конденсатор (рис. 1). Этот конденсатор известен как пусковой конденсатор или конденсатор фазовой синхронизации.

Если вам нужно изменить направление вращения двигателя, измените схему подключения, как показано на рисунке ниже.

Ограничения:

Ограничения метода статического конденсатора перечислены ниже.

  • Выходная мощность трехфазного асинхронного двигателя уменьшена на 2/3 rd от полной мощности нагрузки.
  • Этот метод можно использовать для временных целей. Он не подходит для непрерывно работающих приложений.
  • В этом методе эффект загрузки постоянно состоит из двух фаз. Это сократит срок службы двигателя.

Похожие сообщения:

  • Что происходит с трехфазным двигателем, когда 1 из 3 фаз теряется?
  • Что происходит с трехфазным двигателем при потере двух из трех фаз?

Использование ЧРП

ЧРП означает частотно-регулируемый привод . Это устройство, которое используется для управления двигателем (регулируемая скорость при работе). ЧРП регулирует входной ток двигателя в соответствии с потребностью (нагрузкой). Это устройство позволяет двигателю эффективно работать при различных условиях нагрузки.

Этот метод лучше всего подходит для работы трехфазного асинхронного двигателя с однофазным питанием. В этом случае доступное однофазное питание подается на вход частотно-регулируемого привода. VFD преобразует однофазное питание в постоянный ток путем выпрямления. Опять же, он преобразует источник постоянного тока в трехфазный источник переменного тока. А частота трехфазного выхода регулируется частотно-регулируемым приводом.

Следовательно, доступная мощность (однофазная) подается на ЧРП, а выходная мощность (трехфазная) ЧРП используется в качестве входа трехфазного двигателя. Это также устраняет бросок тока во время запуска двигателя. Он также обеспечивает плавный пуск двигателя от состояния покоя до полной скорости. Существуют различные типы и характеристики ЧРП для различных применений и двигателей. Вам нужно всего лишь выбрать подходящий частотно-регулируемый привод для ваших приложений.

Стоимость частотно-регулируемого привода превышает стоимость статического конденсатора. Но это дает лучшую производительность двигателя. Стоимость частотно-регулируемого привода меньше, чем у преобразователя с вращающейся фазой. Таким образом, в большинстве приложений частотно-регулируемый привод используется вместо вращающихся преобразователей фазы.

Преимущества ЧРП:

Преимущества использования ЧРП для работы трехфазного асинхронного двигателя от однофазного источника питания.

  • Регулируя параметр частотно-регулируемого привода, мы можем добиться плавного пуска двигателя.
  • Легко работать с максимальной производительностью и большей эффективностью.
  • Имеет функцию самодиагностики, которая используется для защиты двигателя от перенапряжения, перегрузки, перегрева и т.д.
  • Запрограммирован на автоматическое управление двигателем.

Использование вращающегося преобразователя фаз

Другой используемый метод заключается в работе трехфазного асинхронного двигателя от однофазного источника питания с использованием вращательного преобразователя фаз (RPC). Этот процесс очень дорогой. Это даст наилучшую производительность по сравнению со всеми другими методами. Потому что поворотный фазоинвертор выдает на выходе идеальный трехфазный сигнал. Кроме того, он не используется широко, поскольку стоимость вращающегося преобразователя очень высока.

Схема подключения поворотного преобразователя фаз показана на рисунке ниже.

Похожие сообщения:

  • Разница между однофазным и трехфазным асинхронным двигателем
  • Разница между однофазным и трехфазным источником питания
  • Почему трехфазное питание? Почему не 6, 12 или больше для силовой передачи?
  • Если 1-фазное питание 230 В, почему 3-фазное 400 В, а не 690 В?
  • Преимущества трехфазной системы по сравнению с однофазной системой
  • Значения трехфазного тока в трехфазной системе
  • Соединение звездой (Y): значения трехфазной мощности, напряжения и тока
  • Соединение треугольником (Δ): 3-фазная мощность, значения напряжения и тока

Показать полную статью

Связанные статьи

Кнопка «Вернуться к началу»

Как правильно эксплуатировать трехфазный двигатель с однофазным питанием | Plant Engineering

Итак, вы сказали соседу, что работаете с электрооборудованием, и теперь он думает, что вы можете решить его проблему, потому что он или она купили трехфазный двигатель, который не может работать от однофазной сети. Просьба переоборудовать этот мотор уже звучит как больше проблем, чем того стоит. Хотя это не совсем так. Есть несколько способов облегчить этот процесс.

Метод фантомной ноги

Трехфазное питание включает три симметричные синусоидальные волны, которые на 120 электрических градусов не совпадают по фазе друг с другом (см. рис. 1). Одним из методов преобразования однофазной мощности, который хорошо работал в течение десятилетий, было подключение двух фаз к входящей однофазной мощности 220 В и создание «фантомной ветви» для третьей фазы с использованием конденсаторов для принудительного смещения между основной и вспомогательной обмотками. . В этом случае смещение составляет 90 электрических градусов.

Для этого метода емкость конденсаторов должна соответствовать нагрузке. Ток будет несбалансированным, если это не так. В отличие от фазового сдвига на 120 градусов, показанного в нижней части рисунка 1, неправильное сопряжение конденсатора и нагрузки может привести к большому отклонению. Чем больше несоответствие, тем ниже крутящий момент.

Метод с вращающимся преобразователем фаз

Другой жизнеспособный метод — с вращающимся преобразователем фаз (см. рис. 2). Например, в деревообрабатывающем цехе может использоваться вращающийся фазовый преобразователь для работы нескольких трехфазных машин с однофазным входом питания. Одним из недостатков является то, что процесс может быть очень дорогим в течение всего времени преобразования вращательной фазы, независимо от того, используется ли какое-либо оборудование. Ток может быть уравновешен, когда работает определенное оборудование, но если работает несколько машин или все они сильно загружены, трехфазная мощность — ток и напряжение — резко неуравновешена.

«Стандарт NEMA MG 1: Двигатели и генераторы» требует, чтобы двигатели работали от напряжения, сбалансированного в пределах 1%. Если применить правило 10x (процентная асимметрия тока может в 10 раз превышать процентную асимметрию напряжения) к двигателю, работающему с 1%-ной асимметрией напряжения, то асимметрия тока может составить 10%. Это полезно, потому что большинство трехфазных двигателей, работающих в описанной выше системе, работают с асимметрией тока от 15% до 50%. Даже с учетом графика снижения номинальных характеристик NEMA MG 1 (см. рис. 3) ни один двигатель не должен работать с такой большой асимметрией тока.

Метод частотно-регулируемого привода

Преобразователь частоты (ЧРП) выпрямляет каждую пару фаз в постоянный ток и инвертирует постоянный ток в мощность для трехфазного выхода, что означает, что ЧРП можно использовать с однофазным входом для работы трехфазного двигателя. Поддержка производителя варьируется, и рекомендуется с осторожностью снижать номинальные характеристики диска на 1, деленное на квадратный корень из 3 (около 58%). Также обратите внимание, что номинал ЧРП в л.с./кВт указан для удобства определения размеров приводов, поскольку они рассчитаны по току. Например, двигатель мощностью 10 л.с. (7,5 кВт) будет использовать частотно-регулируемый привод мощностью 15 л.с. (11 кВт). Пользователю настоятельно рекомендуется сотрудничать с производителем привода при выборе и определении размера частотно-регулируемого привода для такого использования.

Компрессоры, механическая мастерская и деревообрабатывающее оборудование, а также декоративные фонтаны являются хорошими кандидатами для этого метода. Вместо того, чтобы покупать дорогой однофазный двигатель, менять элементы управления и решать проблемы с регулированием скорости и пусковым моментом, лучше использовать частотно-регулируемый привод для управления существующим двигателем от однофазной мощности. Для многих приложений мощностью до 5 л.с. (4 кВт) подходящий частотно-регулируемый привод можно приобрести гораздо дешевле, чем стоимость перемотки трехфазного двигателя и обеспечения необходимых элементов управления для его работы.

Дополнительными преимуществами являются то, что купить трехфазный двигатель обычно дешевле, элементы управления не требуют замены или модификации, а преобразователь частоты обеспечивает дополнительное регулирование скорости.