Размеры биметаллические батареи: Размеры биметаллических радиаторов отопления: расчет количества секций

Содержание

Размеры биметаллических радиаторов отопления: как правильно рассчитать?

Размеры биметаллических радиаторов — важная характеристика, влияющая на качество обогрева помещения.

Каких размеров выпускают батареи для отопления?

Имеют ли они стандартные значения или отличны у каждого производителя?

Содержание

  • 1 Размеры биметаллических радиаторов отопления
  • 2 Расчет количества секций радиатора

Размеры биметаллических радиаторов отопления

Габариты биметаллических радиаторов описываются следующими основными параметрами: монтажной высотой, глубиной и шириной.

Высота и глубина зависят от размеров секции, а ширина — от их количества.

Высота батарей зависит от расстояния между вертикальными каналами. Оно имеет стандартные значения для радиаторов всех производителей — 200, 350 и 500 мм.

Расстояние между вертикальными каналами — отрезок между центрами входных и выходных отверстий. Конечная высота, а также глубина и ширина радиаторов различны (см. табл. 1).

Таблица 1. Размеры биметаллических радиаторов
БрендМодельРасстояние между вертикальными каналами, ммВысота/Ширина/Глубина, мм
Global (Италия)Style 350350425/80/80
Style 500500575/80/80
Tenrad (Германия)Tenrad 350350400/80/77
Tenrad 500500550/80/77
Альтермо (Украина)Альтермо ЛРБ500575/82/80
Альтермо РИО500570/82/80
Grandini (Китай)Grandini 350350430/80/82
Grandini 500500580/80/80
Radena (Италия)Radena Bimetall 350350403/80/85
Radena (Италия)Radena Bimetall 500500552/80/85

Межосевое расстояние у большинства производителей указывается в названии модели. Но монтажная высота отличается и указывается в спецификации к радиатору.

Ширина радиатора зависит от количества секций. Так, для 8 секционного радиатора параметр имеет значение 640 мм, для 10 секционного — 800 мм и для 12-секционного — 960 мм (значения для батарей с шириной секции 80 мм).

Расчет количества секций радиатора

Тепловая мощность радиаторной секции зависит от ее габаритных размеров. При расстоянии между вертикальными осями в 350 мм параметр колеблется в диапазоне 0,12-0,14 кВт, при расстоянии 500 мм — в диапазоне 0,16-0,19 кВт. Согласно требованиям СНиП для средней полосы на 1 кв. метров площади необходима тепловая мощность не менее 0,1 кВт.

Учитывая данное требование, используется формула для расчета количества секций:

где S — площадь отапливаемого помещения, Q — тепловая мощность 1-ой секции и N — требуемое количество секций.

Например, в помещение площадью 15 м2 планируется устанавливать радиаторы с секциями тепловой мощности 140 Вт. Подставив значения в формулу, получаем:

N=15 м2*100/140 Вт=10,71.

Округление осуществляется в большую сторону. Учитывая стандартные формы, необходимо устанавливать биметаллический 12-секционный радиатор.

Важно: при расчете биметаллических радиаторов учитывают факторы, влияющие на теплопотери внутри помещения. Полученный результат увеличивают на 10% в случаях расположения квартиры на первом или последнем этаже, в угловых помещениях, в комнатах с большими окнами, при малой толщине стен (не более 250 мм).

Более точный расчет получают путем определения количества секций не на площадь комнаты, а ее объем. Согласно требованиям СНиП для обогрева одного кубического метра помещения требуется тепловая мощность в 41 Вт. Учитывая данные нормы, получают:

где V — объем отапливаемого помещения, Q — тепловая мощность 1-ой секции, N — требуемое число секций.

Например, расчет для помещения все той же площадью 15 м2 и высотой потолков 2,4 метра. Подставив значения в формулу, получаем:

N=36 м3*41/140 Вт=10,54.

Увеличение вновь осуществляется в большую сторону: необходим радиатор с 12 секциями.

Выбор ширины биметаллического радиатора для частного дома отличается от квартирного. При расчете учитывается коэффициенты теплопроводности каждого материала, используемого при строительстве кровли, стен и пола.

При выборе размеров следует учитывать требования СНиП по монтажу батарей:

  • расстояние от верхнего края до подоконника должно быть не менее 10 см;
  • расстояние от нижнего края до пола должно быть 8-12 см.

Для качественного обогрева помещения необходимо уделить внимание выбору размеров биметаллических радиаторов. Габариты батарей каждого производителя имеют незначительные различия, что учитывают при покупке. Правильный расчет позволит избежать ошибок.

Размеры биметаллических радиаторов отопления: высота, глубина, межцентровое расстояние

Владельцы квартир в домах с централизованным типом обогрева долго ждали, когда производители создадут батареи, способные выдерживать все его недостатки: высокое давление, теплоноситель низкого качества и мощные гидроудары, способные уничтожить слабые алюминиевые или стальные радиаторы.

Объединение этих двух металлов позволило произвести совершенно уникальные по своим техническим характеристикам биметаллические радиаторы.

Особенность биметаллических устройств

Когда вовнутрь алюминиевого корпуса поместили стальной змеевик, закрепив всю конструкцию наглухо сваркой, было решено сразу несколько проблем:

  • Противостояние высокому давлению. Напор, с которым вода подается в теплосеть в среднем равна 10, а гидроудары, которые он вызывает – 12-15 атмосферам, что не мог до сих выдержать ни один из видов радиаторов, кроме чугунных. Представленные на рынке размеры биметаллических радиаторов отопления благодаря их устройству легко переносят давление от 20 до 40 атмосфер, а некоторые панельные модели – до 100 атмосфер. Это делает их единственными надежными претендентами на то, чтобы занять место старых чугунных батарей.
  • Плохое качество теплоносителя в централизованной системе отопления достаточно быстро выводило из строя отопительное оборудование, особенно сделанное из алюминия. То, что в новых видах обогревателей сердечник сделан из стали, которой кислотный уровень воды безразличен, а наружный кожух из алюминия с ней не соприкасается, увеличивает долговечность биметаллических радиаторов. Средний гарантийный срок, не зависимо от того, низкие или высокие биметаллические радиаторы, составляет 20 лет.
  • Достаточно узкие стальные коллекторы делают конструкцию экономичной, так как чем меньше носителя в системе, тем быстрее она прогревается.
  • Габариты биметаллических радиаторов отопления напрямую влияют на их тепловую мощность. Чем выше и шире секция устройства, тем большей теплоотдачей она обладает.

Потребители, уже испытавшие биметаллические конструкции у себя в квартирах, говорят, что единственный их недостаток – это высокая стоимость. Но, как правило, качество, безопасность, красота и экономичность – это как раз те свойства, за которые не жалко заплатить любые деньги.

Типы алюминиево-стальных радиаторов

Производители, идя на поводу у потребителей, стараются удешевить производство биметаллических конструкций, не меняя их устройства в целом. Теперь на рынке можно встретить несколько типов батарей этого вида:

  • Устройство «классического» радиатора таково, что основой, по которой течет теплоноситель, является стальной коллектор, «упакованный» в алюминиевый кожух. Это сделано для того, чтобы всю нагрузку по соприкосновению с водой взяла на себя сталь, а алюминий, имеющий самый высокий уровень теплоотдачи, нагреваясь от нее, передавал тепло комнате. Появившиеся упрощенные модели, не зависимо от того, каков размер секции биметаллического радиатора, оснащены стальными вертикальными каналами, тогда как горизонтальные коллекторы остаются алюминиевыми. Это действительно значительно сократило их стоимость и увеличило степень теплоотдачи, но так же сделало уязвимыми перед качеством теплоносителя и уровнем напора в сети.
  • Второй тип – это типичная дорогая «классика», которую можно устанавливать в отопительных системах с самым нестабильным давлением.

Если установка радиаторов предполагается в помещении с автономной системой обогрева, то нет смысла вкладывать большие деньги в дорогие модели. В этом случае достаточно сделать расчет мощности и определить оптимальные размеры биметаллических радиаторов отопления (10 секций — это стандартный тип, хотя можно выбрать и другой вид устройства).

Виды радиаторов

В отличие от советской эпохи, когда батареи имели одинаково стандартный вид «гармошки», сегодня встречаются разные типы радиаторов, и биметаллические в этом плане не исключение.

Монолитные модели представляют собой цельную секцию, состоящую из стальных патрубков, которые не подлежат разборке. Подобную конструкцию нельзя изменить в размерах, нарастить или уменьшить количество секций. Если необходимая для помещения мощность рассчитана правильно, то лучшего и более надежного «друга» для системы с сильными перепадами давления не найти. Литые биметаллические радиаторы способны выдерживать натиск до 100 атмосфер и являются самыми дорогими на рынке.

Разборные или, как их еще называют, секционные модели, позволяют самостоятельно определять, какой размер секций биметаллического радиатора отопления необходим для каждого конкретного помещения.

Чтобы в квартире было по-настоящему тепло, следует заранее определить, какой мощностью должен обладать радиатор с учетом всех теплопотерь. От размера устройства зависит его емкость, и чем она меньше, тем экономнее он работает.

Стандартные габариты батарей

Размеры биметаллических радиаторов точно такие же, как и других видов обогревателей. Они определены межосевым расстоянием между нижними и верхними горизонтальными коллекторами. Не стоит считать эти параметры размером всей конструкции. Чтобы вычислить, какова высота биметаллического радиатора, следует к межосевому показателю, указанному на изделии, прибавить 80. Существует три межосевых расстояния – 200, 350 и 500 мм, но это не единственные параметры этих устройств.

  • длина стандартной секции составляет 80 мм;
  • глубина – от 75 до 100 мм;
  • высота – 550-580 мм.

Чтобы высчитать, какую высоту имеют, например, стандартные радиаторы биметаллические 500 мм, нужно к этому показателю прибавить 80, а полученные 580 мм – это и есть его истинный размер, который следует учитывать, определяя место, где он будет стоять.

Кроме стандартных моделей существуют так называемые дизайнерские варианты биметаллических радиаторов.

Высокие конструкции

Когда интерьер квартиры или офиса требует особого подхода к обустройству, то и обогреватели должны гармонично в него вписываться. Так, если в помещении панорамные окна, то можно установить биметаллические радиаторы, габариты которых по высоте равны 880 мм или более, при длине секций 80 мм и глубине 95 мм.

Как правило, это литые надежные устройства, которые можно закреплять на стенах. Они могут не только обогревать помещение, но и украшать его, так как выпускаются в достаточно богатой цветовой гамме. В крайнем случае, можно заказать производителю модель необходимого оттенка или с определенным рисунком.

Невысокие батареи

Еще одним дизайнерским решением являются низкие биметаллические радиаторы отопления. Их можно устанавливать под большими окнами, где стандартные модели не вписываются по высоте. Минимальные по межосевому расстоянию биметаллические радиаторы имеют 200 мм, при этом, их  характерной чертой являются те же прочность, надежность, способность противостоять высокому давлению и уровень теплоотдачи, что и у стандартных моделей.

Это связано с тем, что конструкция этих обогревателей не меняется в зависимости от размера. Правда, есть производители, которые «лукавят», говоря, что цена на их изделия ниже из-за их габаритов. При этом на самом деле, биметаллические радиаторы (300 мм, 400 мм или 200 мм не имеет значение) обладают другим строением. Стальной горизонтальный сердечник у них отсутствует, и лишь вертикальные коллекторы выполнены из этого металла. Определить подделку можно по техпаспорту, в котором указаны не привычный для «настоящих» биметаллических обогревателей уровень давления в 20-40 атмосфер, а всего 12-15, что этим устройствам несвойственно.

Покупать подобное изделие в квартиру с централизованным типом обогрева не стоит, но в автономной системе они будут к месту.

Соотношение мощности и размера радиаторов

Как показала многолетняя практика использования отопительных приборов, ширина секций биметаллического радиатора (как и любого другого), его длина и высота отражаются на мощности, и это понятно: чем больше площадь радиатора, тем выше его теплоотдача.

Если сравнить теплоотдачу, массу, емкость, размер и уровень давления биметаллической конструкции с алюминиевым аналогом, то будет видно, какая между ними разница.

  • Биметаллические радиаторы 350 мм (межосевое расстояние):
  • Теплоотдача 136 Вт (алюминиевый – 139)
  • Уровень давления (рабочий) 20 Бар (15 Бар у алюминия)
  • Показатель опрессовки 30 Бар (20-25 Бар соответственно).
  • Емкость секции 0.18 л (0.19 л)
  • Вес одной секции 1.36 кг (алюминиевый – 1.2 кг).
  • Биметаллические радиаторы 500 (80 глубина):
  • Теплоотдача от одной секции 204 Вт (180 Вт алюминиевых при аналогичных габаритах).
  • Рабочее давление 30 Бар (20 соответственно).
  • Опрессовочное давление 40-50 Бар (30 Бар).
  • Емкость секции 0.2 л (0.27 л).
  • Вес одного элемента 1.90 кг (1.45 кг).

Как видно из вышеперечисленных параметров, мощность меняется в зависимости от размера радиатора, как и уровень его давления, и вес, и объем.

Выбирая, какой тип батарей установить, нужно отталкиваться от реальных потребностей помещения в количестве тепла, а не от стиля и качества оформления интерьера. К счастью, современные производители производят модели любого уровня – низкие биметаллические радиаторы отопления стоят в магазинах рядом с высокими аналогами.

Зная, какой мощности должно быть устройство, достаточно посмотреть в таблицу, которую предоставляют либо продавцы, либо производители к каждому изделию и найти соответствующий показатель размера. Устанавливая секционную модель, ее всегда можно нарастить, чтобы увеличить мощность, но если радиатор не помещается под окном, тогда следует выбирать дизайнерские варианты обогревателей.

Разработка литий-металлических сульфидных батарей. Отчет о проделанной работе № 4, 1 октября 1976 г. — 30 сентября 1977 г. [2. Элемент 5 кВтч, 79 Втч/кг] (Технический отчет)

Разработка литий-металлических сульфидных батарей. Отчет о проделанной работе № 4, 1 октября 1976 г. — 30 сентября 1977 г. [2. Ячейка 5 кВтч, 79 Втч/кг] (Технический отчет) | ОСТИ.GOV

перейти к основному содержанию

  • Полная запись
  • Другое связанное исследование

Описаны работы, проведенные в подразделении Atomics International компании Rockwell International по разработке высокотемпературных литий-кремниевых сульфидных батарей в период с 1 октября 1976 г. по 30 сентября 1977 г. Программа состоит из ряда задач, направленных на конкретные аспекты разработки аккумуляторов, которые отдельно финансируются Аргоннской национальной лабораторией, Исследовательским институтом электроэнергетики (EPRI) и Rockwell International. Исследовательские усилия в этот отчетный период были направлены на разработку литий-кремниевых отрицательных электродов, положительных электродов FES и керамических сепараторов, устойчивых в среде клетки. Были протестированы компактные ячейки мощностью до одного кВтч. Почти завершено строительство ячейки на 2,5 кВтч. Инструментальная ячейка мощностью 1 кВтч использовалась для определения тепловых характеристик и помощи в проектировании крупных систем управления теплом. Улучшение характеристик ячейки достигается за счет стабильных по размеру конструкций электродов и сепараторов порошка AlN. Плотность энергии до 79Втч/кг были достигнуты при 10-часовом расходе. Подготовлены концептуальные проекты аккумуляторных батарей и модулей промышленного электроснабжения для объекта БЕСТ. 58 рисунков, 34 таблицы.

Авторов:

Баббе, Э.Л.;

Адлер, Э.;

Холл, Дж.;

Лай, С.;

Ли, Х .;

Маккой, Л.;

Макфарланд, Б.;

Роли, Д.;

Саммеллс, А . ;

Сондерс, Р.К.

Дата публикации:
Исследовательская организация:
Atomics International Div., Канога-Парк, Калифорния (США)
Идентификатор ОСТИ:
6796908
Номер(а) отчета:
ЭПРИ-ЕМ-716
Номер контракта с Министерством энергетики:  
W-31-109-ENG-38
Тип ресурса:
Технический отчет
Страна публикации:
США
Язык:
Английский
Тема:
25 НАКОПЛЕНИЕ ЭНЕРГИИ; 20 ЭЛЕКТРОСТАНЦИЙ, РАБОТАЮЩИХ НА ИСКОПАЕМЫХ ТОПЛИВАХ; ЛИТИЙ-СЕРНЫЕ АККУМУЛЯТОРЫ; ИССЛЕДОВАТЕЛЬСКИЕ ПРОГРАММЫ; АККУМУЛЯТОР ЭНЕРГИИ ВНЕПИКОВОЕ; НИТРИДЫ АЛЮМИНИЯ; АККУМУЛЯТОРНЫЕ СЕПАРАТОРЫ; ЭЛЕКТРОДЫ; ВЫСОКАЯ ТЕМПЕРАТУРА; СУЛЬФИДЫ ЖЕЛЕЗА; ЛИТИЕВЫЕ СПЛАВЫ; ПРОИЗВОДИТЕЛЬНОСТЬ; КРЕМНИЕВЫЕ СПЛАВЫ; СПЛАВЫ; СОЕДИНЕНИЯ АЛЮМИНИЯ; ХАЛЬКОГЕНИДЫ; ЭЛЕКТРИЧЕСКИЕ БАТАРЕИ; ЭЛЕКТРОХИМИЧЕСКИЕ ЯЧЕЙКИ; ХРАНИЛИЩЕ ЭНЕРГИИ; СИСТЕМЫ НАКОПЛЕНИЯ ЭНЕРГИИ; СОЕДИНЕНИЯ ЖЕЛЕЗА; МЕТАЛЛ-НЕМЕТАЛЛИЧЕСКИЕ АККУМУЛЯТОРЫ; НИТРИДЫ; АЗОТНЫЕ СОЕДИНЕНИЯ; ПНИКТИДЫ; ХРАНИЛИЩЕ; СУЛЬФИДЫ; СОЕДИНЕНИЯ СЕРЫ; СОЕДИНЕНИЯ ПЕРЕХОДНЫХ ЭЛЕМЕНТОВ; 250901* — Аккумуляторы — Аккумуляторы — Проектирование и разработка; 200107 — Электростанции на ископаемом топливе — Непиковое хранение энергии — (1980-)

Форматы цитирования

  • MLA
  • АПА
  • Чикаго
  • БибТекс


Баббе, Э. Л., Адлер, Э., Холл, Дж., Лай, С., Ли, Х., Маккой, Л., МакФарланд, Б., Рэли, Д., Саммелс, А., и Сондерс, Р. К. Разработка литий-металлических сульфидных батарей. Отчет о проделанной работе № 4, 1 октября 1976 г. - 30 сентября 1977 г. [2. Ячейка 5 кВтч, 79 Втч/кг] . США: Н. П., 1978.
Веб. дои: 10.2172/6796908.

Копировать в буфер обмена


Баббе, Э. Л., Адлер, Э., Холл, Дж., Лай, С., Ли, Х., Маккой, Л., МакФарланд, Б., Роли, Д., Саммеллс, А., и Сондерс, Р. К. Разработка литий-металлических сульфидных аккумуляторов. Отчет о проделанной работе № 4, 1 октября 1976 — 30 сентября 1977 г. [2. Ячейка 5 кВтч, 79 Втч/кг] . Соединенные Штаты. https://doi.org/10.2172/6796908

Копировать в буфер обмена


Баббе, Э.Л., Адлер, Э., Холл, Дж., Лай, С., Ли, Х., Маккой, Л. , МакФарланд, Б., Роли, Д., Саммеллс, А., и Сондерс, Р.К. 1978.
«Разработка литий-металлических сульфидных батарей. Отчет о проделанной работе № 4, 1 октября 1976 г. - 30 сентября 1977 г. [2. Элемент 5 кВтч, 79 Втч / кг]». Соединенные Штаты. https://doi.org/10.2172/6796908. https://www.osti.gov/servlets/purl/6796908.

Копировать в буфер обмена

@статья{osti_6796908,
title = {Разработка литий-металлических сульфидных аккумуляторов. Отчет о проделанной работе № 4, 1 октября 1976 г. - 30 сентября 1977 г. [2. Ячейка 5 кВтч, 79 Втч/кг]},
автор = {Бэбб, Э. Л., и Адлер, Э., и Холл, Дж., и Лай, С., и Ли, Х., и Маккой, Л., и МакФарланд, Б., и Рэли, Д., и Саммеллс, А., и Сондерс, Р. К. },
abstractNote = {Описывается работа, проведенная в подразделении Atomics International компании Rockwell International по разработке высокотемпературных литий-кремниевых сульфидных батарей в период с 1 октября 1976 г. по 30 сентября 1977 г. Программа состоит из ряда задач, направленных на конкретные аспекты разработки аккумуляторов, которые отдельно финансируются Аргоннской национальной лабораторией, Исследовательским институтом электроэнергетики (EPRI) и Rockwell International. Исследовательские усилия в этот отчетный период были направлены на разработку литий-кремниевых отрицательных электродов, положительных электродов FES и керамических сепараторов, устойчивых в среде клетки. Были протестированы компактные ячейки мощностью до одного кВтч. Почти завершено строительство ячейки на 2,5 кВтч. Инструментальная ячейка мощностью 1 кВтч использовалась для определения тепловых характеристик и помощи в проектировании крупных систем управления теплом. Улучшение характеристик ячейки достигается за счет стабильных по размеру конструкций электродов и сепараторов порошка AlN. Плотность энергии до 79Втч/кг были достигнуты при 10-часовом расходе. Подготовлены концептуальные проекты аккумуляторных батарей и модулей промышленного электроснабжения для объекта БЕСТ. 58 рисунков, 34 таблицы.},
дои = {10.2172/6796908},
URL-адрес = {https://www.osti.gov/biblio/6796908},
журнал = {},
номер =,
объем = ,
место = {США},
год = {1978},
месяц = ​​{6}
}

Копировать в буфер обмена


Посмотреть технический отчет (9,71 МБ)

https://doi.org/10.2172/6796908


Экспорт метаданных

Сохранить в моей библиотеке

Вы должны войти в систему или создать учетную запись, чтобы сохранять документы в своей библиотеке.

Похожие записи в сборниках ОСТИ.ГОВ:

  • Аналогичные записи

Медь Алюминий Металл с покрытием «ласточкин хвост»

Меню продуктов

По мере того, как рынок электромобилей (EV) быстро расширяется, растет и потребность в литий-ионных батареях, которые позволяют использовать эту автомобильную технологию. Поскольку многие литиевые аккумуляторные элементы требуют соединения медного анода и алюминиевого катода, варианты соединения двух разнородных металлов ограничены, дорогостоящи и могут быть ненадежными в использовании. Работая с ведущими производителями аккумуляторов, Materion разработала революционное решение с покрытием из металла типа «ласточкин хвост».

Наша лента с покрытием «ласточкин хвост» из меди и алюминия изготавливается путем соединения этих двух разнородных металлов бок о бок в длинных непрерывных основных витках. Катушки можно легко штамповать и формовать для создания шин и свинцовых выводов, специально предназначенных для литий-ионных аккумуляторных батарей для электромобилей, гибридных электромобилей (HEV) и гибридных электромобилей с подключаемым модулем (PHEV). Плакированный материал «ласточкин хвост» обладает механическими, электрическими и термическими преимуществами по сравнению с ультразвуковыми или болтовыми креплениями и позволяет выполнять крупномасштабную и недорогую лазерную сборку.

Наш процесс плакирования обеспечивает превосходную металлургическую связь за счет значительного уменьшения площади поперечного сечения и термической диффузии, создавая тонкое пластичное интерметаллическое соединение. В результате получается надежное соединение меди и алюминия типа «ласточкин хвост», которое соответствует прочности и усталостной вязкости алюминиевого сплава.

     

ПРЕИМУЩЕСТВА МАТЕРИАЛА ПОКРЫТИЯ «ЛАСТОЧИНСКИЙ ХВОС» ДЛЯ ШИН И ВЫВОДОВ

Преимущества| Низкое электрическое сопротивление границы раздела Cu-Al приводит к более низкой температуре блока | Высочайшая надежность при испытаниях на долговечность по механической и усталостной прочности | Меньшие размеры материала позволяют создавать более компактные конструкции модулей | Узкая ширина соединения Cu-AL — макс. 4 мм — для оптимальной гибкости конструкции

Для лазерной сварки с частичным проплавлением мы можем предоставить толстую вставку, которая избирательно покрывает полосу медно-алюминиевого сплава до 50% толщины металлической подложки. Чтобы получить дополнительную информацию, загрузите краткое описание толстой вкладки.

Для получения дополнительной информации о металле с покрытием «ласточкин хвост» загрузите краткое описание изделия с покрытием «ласточкин хвост».

Шинные шины с оболочкой

Шинопроводы с покрытием «ласточкин хвост» облегчают лазерную сварку подобных металлов
.

Плакированные свинцовые выступы

Замените анод или катод металлическим покрытием
«ласточкин хвост» для упрощения шинопровода.

ЛАСТОЧНЫЙ ХВОС ПЛАКИРОВАННЫЙ МЕТАЛЛ НАЛИЧИЕ

  • Алюминиевые сплавы: 1050, 1100, 1145
  • Медные сплавы: C10200 с никелевым или луженым покрытием или без него
  • Толщина: от 0,1 мм до 2,5 мм
  • Ширина: До 165 мм

Свяжитесь с Materion, чтобы узнать, как наша медно-алюминиевая технология плакирования «ласточкин хвост» может быть применена к вашему уникальному дизайну аккумуляторной батареи и решению ваших задач по сборке.