Расчет свайных фундаментов: Расчет количества свай для фундамента — пример

Расчет нагрузки свайного фундамента: пример расчета

Методика расчёта необходимого количества свай для фундамента с исходными данными и конкретными примерами. Провести точный и правильный расчёт нагрузки свайного фундамента с учётом всех параметров, требований, норм и правил может каждый человек, знающий сопромат и разбирающийся в математике. На практике это сложно и не нужно неспециалисту, а возможные просчёты могут привести не только к убыткам.  Но понять принцип расчёта поможет краткая упрощённая методика:

  • Подсчитывается общий вес сооружения.
  • Определяются снеговая и ветровая нагрузки исходя из средних обобщённых данных.
  • Подсчитывается полезная или бытовая нагрузка.
  • Подсчитывается общий вес ( сбор весов).
  • Ориентируясь на полную площадь строения и минимально допустимый шаг свай .определяется их общее максимальное количество
  • Подсчитывается суммарная площадь оснований свай.
  • Подбирается типоразмер и реальное количество свай.
  • На основе максимальных значений расстояний между сваями с учётом равного распределения нагрузок  формируется план свайного поля.
  • С учётом распределения нагрузок от строения проектируется и рассчитывается ростверк .

Конкретные цифры для расчётов

В случае, когда сложно либо невозможно определить несущую способность грунта, принимается значение 2,5 кг\см2,  это усреднённый показатель для грунтов российской средней полосы.

Исходные данные для расчёта свайных фундаментов

Максимальный шаг винтовых свай для малоэтажного и хозяйственного индивидуального строительства:

  • строения из бревна или бруса 3 м;
  • сооружения каркасного либо сборно-щитового типа 3 м;
  • здания с несущими стенами из облегчённых блоков 2,5 м;
  • дома из кирпича  и полнотелых бетонных блоков 2 м;
  • монолитные сооружения 1,7 м.

Для кустов свай под печи, колонны и подобные сооружения с сосредоточенной нагрузкой допустимое минимальное расстояние между сваями 1,5 м, для веранд и аналогичных построек 1,2 м.

Вес конструкций и частей зданий

Для сбора весов  допустим приблизительный подсчёт. Ошибка в большую сторону приведёт к небольшому увеличению стоимости работ. Если же реальные нагрузки окажутся больше расчётных, то возможно разрушение фундамента и здания в целом.

Предпочтительный ориентир при отсутствии точной информации максимальное значение.

Стены :

  • кирпичные 600-1200кг\м2;
  • бревенчатые 600 кг\м2;
  • газо- и пенобетонные 400-900 кг\м2;
  • каркасные и панельные 20-30 кг\м2.

Крыши с учётом стропильной системы:

  • листовая сталь, в т.ч. металлопрофиль и металлочерепица 20-30 кг\м2;
  • листы асбоцементные 60-80 кг\м2;
  • рубероид и другие мягкие покрытия 30-50 кг\м2.

Перекрытия:

  • деревянные с утеплителем 70-100 кг\м2;
  • цокольные с утеплителем 100-150 кг\м2;
  • монолитные армированные 500 кг\м2;
  • плитные пустотелые 350 кг\м2.

Снеговая и ветровая нагрузки подсчитываются с учётом средних региональных показателей с поправочными коэффициентами. Средняя эксплуатационная (полезная) нагрузка с учётом веса людей, оборудования, техники, мебели, домашней утвари — 100 кг\м2. После сведения веса необходимо применить к результату коэффициент запаса 1,2.

Пример подсчёта потребности в сваях

Для примера расчёта возьмём одноэтажный дачный дом:

  • с крышей из металлочерепицы;
  • стены бревенчатые;
  • перекрытия деревянные;
  • размер 6 Х 6 м;
  • без фундаментальной печи;
  • высота стен 2,4 м.

Расчет:

  • вес стен из бревна: 2,4 (высота) Х  24 (периметр) Х 600 =  34560;
  • вес перекрытий: 36 (площадь) Х2 Х 100 = 7200;
  • вес крыши: 54 (площадь) * 20 = 1080;
  • полезная нагрузка: 100 Х 36 = 3600.

Сборный вес дома: 34560+7200+1080+3600=46440 кг.

Снеговую нагрузку определяем для севера нашей страны по номинальной массе снежного покрова 190 кг\м2. Отсюда расчет равен: 6х6х190=6840 кг.

Итоговый сборный вес: (46440+6840) Х 1,2 (запас) = 63936 кг.

Выбираем сваю самого популярного размера 89*300мм при её погружении на 2,5 м с несущей способностью 3,6 т, а сводный вес также переводим в тонны. 63,9 : 3,6 = 17,75 шт. — понадобится 18 штук  винтовых свай.

Далее сваи распределяются по свайному полю с учётом первоочередной установки в углах, примыканиях и пересечениях. Количество буронабивных свай будет соответствовать расчёту количества свай винтовых при соблюдении аналогичных параметров.

Для расчёта нагрузок, подбора оптимальных параметров свай и их количества, а также расчёта ростверка, разработаны специальные компьютерные программы, например, StatPile и GeoPile, облегчающие и упрощающие задачу по устройству фундаментов.

Расчёт ростверка

Назначение ростверка равномерное распределение нагрузок на свайную конструкцию. Расчёты параметров ростверка учитывают силы продавливания основания в целом, по каждому углу и воздействия на изгиб.

Довольно сложные подсчёты  застройщикам могут заменить стандартные решения, применение которых возможно только  небольших индивидуальных строений:

  • Материал исполнения ростверка: металлический швеллер, двутавр, монолитный бетон с армированием, брус или бревно сечением не менее материала стен.
  • Голова сваи должна входить в ростверк не меньше, чем на 10 см  для монолитного исполнения
  • По ширине ростверк не может быть меньше толщины стены.
  • Высота должна быть не меньше 30 см для бетона.
  • Ростверк должен располагаться как минимум на 20 см над уровнем почвы.
  • Соединение опор с ростверком может быть жёстким либо свободным.

Расчёт свайного фундамента — онлайн калькулятор на сайте Бауфундамент

Главная

Предварительный расчет стоимости

Уважаемые посетители, в этом разделе нашего сайта вы можете рассчитать ориентировочную
стоимость проекта по возведению свайно-винтового фундамента.

Тип строения

Дом
Коттедж
Баня
Хоз. блок
Беседка
Гараж

Количество этажей

1
2
3

Размер строения

Высота стен

Материал стен

Дерево (брус)
Дерево (бревно)
Каркасные
СИП-панель

Город

МайкопБарнаулБийскРубцовскБлаговещенскАрхангельскСеверодвинскАстраханьНефтекамскСалаватСтерлитамакУфаБелгородСтарый ОсколБрянскУлан-УдэВладимирКовровМуромВолгоградВолжскийКамышинВологдаЧереповецВоронежДербентМахачкалаХасавюртЧитаИвановоАнгарскБратскИркутскКалининградЭлистаКалугаОбнискПетропавловск-КамчатскийКемеровоКиселевскЛенинск-КузнецкийНовокузнецкПрокопьевскКировКостромаКраснодарНовороссийскСочиАчинскКрасноярскНорильскКурганКурскСанкт-ПетербургЕлецЛипецкМагаданЙошкар-ОлаСаранскБалашихаЖелезнодорожныйЖуковскийКоломнаКрасногорскЛюберцыМоскваМытищиНогинскОдинцовоОрехово-ЗуевоПодольскСерпуховХимкиЩелковоЭлектростальМурманскАрзамасДзержинскНижний НовгородВеликий НовгородНовосибирскОмскОренбургОрскОрелПензаПермьАртемВладивостокНаходкаУссурийскВеликие ЛукиПсковПетрозаводскСыктывкарУхтаБатайскВолгодонскНовочеркасскНовошахтинскРостов-на-ДонуТаганрогШахтыРязаньВолжскийНовокуйбышевскСамараСызраньТольяттиБалаковоСаратовЭнгельсЮжно-СахалинскЕкатеринбургКаменск-УральскийНижний ТагилПервоуральскВладикавказСмоленскНевинномысскСтавропольТамбовАльметьевскКазаньНабережные ЧелныНижнекамскТверьТомскНовомосковскТулаКызылТобольскТюменьИжевскДимитровградУльяновскКомсомольск-на-АмуреХабаровскАбаканНефтеюганскНижневартовскСургутЗлатоустКопейскМагнитогорскМиассЧелябинскГрозныйНовочебоксарскЧебоксарыЯкутскНовый УренгойНоябрьскРыбинскЯрославль

Результаты расчета:

  • Нажимая на кнопку «Отправить», я соглашаюсь с условиями
    обработки моих персональных данных

СПАСИБО
ЗА ЗАЯВКУ!

Мы перезвоним вам в ближайшее время.
А пока переходите в наш Instagram, подписывайтесь, и узнавайте много
нового о винтовых сваях BAU.
BAUFUNDAMENT

Проектирование свай [подробное руководство по проектированию]

В статье рассматривается проектирование свай (монолитных буронабивных одинарных). Буронабивные сваи чаще используются в мире в качестве фундамента глубокого заложения, когда осевая нагрузка не может быть достигнута за счет мелкозаглубленного фундамента.

Существуют различные методы проектирования свай. Во всех методах поверхностное трение и расчет торцевой опоры выполняются при проектировании свай. Если мы сможем рассчитать вышеуказанные параметры, мы сможем легко оценить емкость сваи.

Расчет отрицательного трения кожи и нормального трения кожи о грунт в этом посте не рассматривается.

Однако при оценке несущей способности сваи можно учитывать влияние поверхностного трения грунта.

В частности, при отрицательном поверхностном трении, которое снижает грузоподъемность сваи, это следует учитывать при расчете. Влияние трения кожи о землю и кожу будет рассмотрено в другой статье на этом сайте.

Обычно допустимое торцевое трение и поверхностное трение получают из геотехнических исследований.

В отчете содержится чистое допустимое торцевое скольжение и допустимое поверхностное трение.

Если предельная концевая опора и предельное поверхностное трение указаны в отчете о геотехнических исследованиях, они должны быть преобразованы в допустимые нагрузки, поскольку мы сравниваем их с рабочими нагрузками (эксплуатационными нагрузками) конструкции.

Уравнения для оценки торцевой опоры и поверхностного трения

Торцевая несущая способность               = (чистая допустимая торцевая опора) x (площадь поперечного сечения основания сваи)

Коэффициент поверхностного трения              = (допустимое поверхностное трение) x (площадь поверхности сваи в длине раструба) породы) по длине периметра сваи. Как правило, сваи имеют глубину забивки вокруг диаметра сваи, если это не указано в геотехническом отчете.

Геотехническая грузоподъемность сваи = Несущая способность на торце + Способность к поверхностному трению

Геотехническая мощность сваи сравнивается с конструкционной способностью сваи, чтобы получить несущую способность сваи.

Несущая способность сваи может быть оценена с помощью структурного анализа.

Свая может быть выполнена в виде колонны, воспринимающей осевую нагрузку в грунте и породе.

При забивке свай в очень мягких грунтах, таких как торф, рекомендуется провести структурную проверку сваи с учетом эффекта коробления в очень мягкой среде.

Как правило, инженеры использовали следующее уравнение для оценки несущей способности свай.

Структурная пропускная способность куча = 0,25 FCU AC

, где FCU = характерная прочность куба бетона
AC = площадь поперечного сечения кучи

Проектирование свеси = меньше структурной способности и геотехнической способности

Статью «Конструкция наголовника сваи» можно использовать для получения сведений о конструкции наголовника сваи.

Глубокий (свайный) фундамент. Расчеты, проектирование и методы строительства

 

 

Сваи представляют собой относительно длинные и тонкие элементы, используемые для передачи нагрузок фундамента через слои грунта с низкой несущей способностью на более глубокий грунт или горную породу с более высокой несущей способностью. Метод, с помощью которого это происходит, лежит в основе простейшей классификации типов свай. У нас есть два основных типа свай (типы свай):

1. Концевые сваи

2. Висячие (или плавающие) сваи

Для обоих типов свай требуется дальнейшее различие в зависимости от способа их установки.

  1. Забивные (или забивные) сваи: Эти сваи, как правило, предварительно формируют перед забивкой, домкратом, завинчиванием или забиванием в землю.
  2. Буронабивные сваи: Для этих свай сначала пробуривается отверстие в земле, а затем в нем обычно формируется свая.

Эти категории могут быть дополнительно подразделены на:

Большой рабочий объем

  • Предварительно сформированный – вбитый в землю и оставленный на месте
    • — сплошной – дерево/бетон
    • — Полые с закрытым концом – Стальные или бетонные трубы
  • Формованная на месте труба с закрытым концом, приводящаяся в движение, а затем извлекаемая, заполняющая пустоты бетоном

Малый рабочий объем

  • Винтовые сваи
  • Стальная труба и двутавровые секции – (секции труб могут закупориться и стать большими)

Без смещения

  • Пустота, образовавшаяся в результате бурения или земляных работ, затем заполненная бетоном. Во время строительства может потребоваться поддержка отверстия, для чего есть два основных варианта.
    • Стальной корпус
    • Буровой раствор

Нагрузки, прикладываемые к сваям

Комбинации вертикальной, горизонтальной и моментной нагрузки могут быть приложены к поверхности грунта от вышележащей конструкции. Для большинства фундаментов нагрузки, прикладываемые к сваям, в основном вертикальные. Горизонтальные нагрузки, возникающие от ветровых нагрузок на конструкции, обычно относительно малы и не учитываются. Однако для свай в причалах, фундаментах опор мостов, высоких дымоходов и морских свайных фундаментах боковое сопротивление является важным фактором.

Здесь рассматривается только расчет свай, подверженных вертикальным нагрузкам. Анализ свай, подвергающихся боковой и моментной нагрузке, более сложен из-за характера взаимодействия грунт-конструкция. Помимо способности передавать нагрузки от фундамента на нижележащие слои, сваи также широко используются в качестве средства контроля осадки и дифференциальной осадки. В этих примечаниях рассматривается только предельная осевая грузоподъемность.

Сваи с вертикальной нагрузкой

Предельная грузоподъемность одиночных свай

Общее сопротивление сваи может быть разделено на компоненты основания и ствола. Тогда рассмотрение статического равновесия дает предельную несущую способность как:

P u = P su + P bu – Вт

P u Предельное сопротивление в основании сваи (Base Resistance)

P su = Предельное сопротивление боковому сдвигу ствола сваи (Сопротивление стволу)

Вт = собственный вес сваи

Базовое сопротивление

При анализе поведения сваи принято выражать предельное сопротивление основания через основание сваи

f b = чистое предельное сопротивление на единицу площади основания

p o = Давление вскрышных пород на уровне основания

Если свая не выступает над поверхностью грунта, вес сваи обычно аналогичен силе из-за давления вскрышных пород. Таким образом,

W ≈ A b p o

и P u = P su + A b f b

3

Боковой упор

As = площадь поверхности ствола сваи, соприкасающаяся с грунтом

= Среднее предельное боковое сопротивление на единицу площади

В общем случае боковое сопротивление зависит от глубины под поверхностью, поскольку как прочность в недренированном состоянии su (краткосрочный анализ в недренированном состоянии), так и действующие напряжения (в долгосрочном анализе) увеличиваются с глубиной. Среднее касательное напряжение может быть выражено математически как

, где L — длина сваи

Анализ общего напряжения (глинистые грунты)

Для этих почв лимитирующая способность часто определяется кратковременным (недренированным) состоянием.

Базовое сопротивление

Это простая задача на несущую способность, то есть

, где qf — предельная несущая способность. Для грунта с fu = 0 предельную несущую способность можно записать как

q f = N c s u + g D = N c s u + p o 900 предельное сопротивление просто

f b = N c s u

and the ultimate base resistance approximately

P bu = A b (N c s u + p o )

Обычно принимают c u = c ub

, где sub — прочность недренированного грунта на сдвиг в основании сваи, а fu принимают равным нулю.