Расчет емкости конденсатора онлайн: Электроемкость конденсатора. Калькулятор онлайн
Содержание
Электроемкость конденсатора. Калькулятор онлайн
0 | ||||
AC | +/- | ÷ | ||
7 | 8 | 9 | × | |
4 | 5 | 6 | — | |
1 | 2 | 3 | + | |
0 | 00 | , | = |
Онлайн калькулятор вычисления емкости конденсатора, позволит найти электроемкость C плоского, цилиндрического и сферического конденсаторов и даст подробное решение.
Единицы измерения, могут включать любые приставки Си.
Калькулятор автоматически переведет одни единицы в другие.
Калькулятор вычислит:
Емкость плоского конденсатора.
Емкость цилиндрического конденсатора.
Емкость сферического конденсатора
Емкость плоского конденсатора
Плоский конденсатор представляет собой две параллельные проводящие пластины, разделенные диэлектриком, расположенные на малом расстоянии друг от друга.
Электроемкость C плоского конденсатора равна произведению электрической постоянной ε0, диэлектрической проницаемости диэлектрика e и площади S пластины конденсатора, деленного на расстояние d между пластинами где, ε0 = 8.85418781762039 × 10-12
Единицей измерения электроемкости является – Фарад (Ф, F).
Электроемкость в 1 Фарад является очень большой емкостью, к примеру емкостью в 1 Фарад обладает сфера в 13 раз, превышающая радиус Солнца, поэтому в основном используют дольные единицы Фарада. -24]
Емкость цилиндрического конденсатора
Цилиндрический конденсатор представляет собой конденсатор, обкладками, которого являются два цилиндра, внутренний с радиусом R1 и внешний с радиусом R2. Между обкладками находится диэлектрик с диэлектрической проницаемостью ε.
Электроемкость цилиндрического конденсатора определяется формулой, где
π – число Пи (3.14)
ε0 – электрическая постоянная, ε0 = 8.85418781762039 × 10-12
ε – диэлектрическая проницаемость диэлектрика
l – длина цилиндра
ln – натуральный логарифм
R1 – радиус внутренней обкладки
R2 – радиус внешней обкладки
Единицей измерения электроемкости является – Фарад (Ф, F).
Электроемкость в 1 Фарад является очень большой емкостью, к примеру емкостью в 1 Фарад обладает сфера в 13 раз, превышающая радиус Солнца, поэтому в основном используют дольные единицы Фарада. -24]
Емкость сферического конденсатора
Сферический конденсатор представляет собой конденсатор, обкладками которого являются две концентрические сферы, радиусами R1 и R2, между которыми расположен диэлектрик, с диэлектрической проницаемостью ε.
Электроемкость сферического конденсатора определяется формулой, где
π – число Пи (3.14)
ε0 – электрическая постоянная, ε0 = 8.85418781762039 × 10-12
ε – диэлектрическая проницаемость диэлектрика
R1 – радиус внутренней обкладки
R2 – радиус внешней обкладки
Единицей измерения электроемкости является – Фарад (Ф, F).
Электроемкость в 1 Фарад является очень большой емкостью, к примеру емкостью в 1 Фарад обладает сфера в 13 раз, превышающая радиус Солнца, поэтому в основном используют дольные единицы Фарада.
Диэлектрическая проницаемость ε =
Радиус R1 = Метр (м)Декаметр дам (dam) × [10^1]Гектометр гм (hm) × [10^2]Километр км (km) × [10^3]Мегаметр Мм (Mm) × [10^6]Гигаметр Гм (Gm) × [10^9]Тераметр Тм (Tm) × [10^12]Петаметр Пм (Pm) × [10^15]Эксаметр Эм (Em) × [10^18]Зеттаметр Зм (Zm) × [10^21]Иоттаметр Им (Ym) × [10^24]Дециметр дм (dm) × [10^-1]Сантиметр см (cm) × [10^-2]Миллиметр мм (mm) × [10^-3]Микрометр мкм (µm) × [10^-6]Нанометр нм (nm) × [10^-9]Пикометр пм (pm) × [10^-12]Фемтометр фм (fm) × [10^-15]Аттометр ам (am) × [10^-18]Зептометр зм (zm) × [10^-21]Иоктометр им (ym) × [10^-24]
Радиус R2 = Метр (м)Декаметр дам (dam) × [10^1]Гектометр гм (hm) × [10^2]Километр км (km) × [10^3]Мегаметр Мм (Mm) × [10^6]Гигаметр Гм (Gm) × [10^9]Тераметр Тм (Tm) × [10^12]Петаметр Пм (Pm) × [10^15]Эксаметр Эм (Em) × [10^18]Зеттаметр Зм (Zm) × [10^21]Иоттаметр Им (Ym) × [10^24]Дециметр дм (dm) × [10^-1]Сантиметр см (cm) × [10^-2]Миллиметр мм (mm) × [10^-3]Микрометр мкм (µm) × [10^-6]Нанометр нм (nm) × [10^-9]Пикометр пм (pm) × [10^-12]Фемтометр фм (fm) × [10^-15]Аттометр ам (am) × [10^-18]Зептометр зм (zm) × [10^-21]Иоктометр им (ym) × [10^-24]
Единица измерения электроемкости C Фарад (Ф)Декафарад даФ (daF) × [10^1]Гектофарад гФ (hF) × [10^2]Килофарад кФ (kF) × [10^3]Мегафарад МФ (MF) × [10^6]Гигафарад ГФ (GF) × [10^9]Терафарад ТФ (TF) × [10^12]Петафарад ПФ (PF) × [10^15]Эксафарад ЭФ (EF) × [10^18]Зеттафарад ЗФ (ZF) × [10^21]Иоттафарад ИФ (YF) × [10^24]Децифарад дФ (dF) × [10^-1]Сантифарад сФ (cF) × [10^-2]Миллифарад мФ (mF) × [10^-3]Микрофарад мкФ (µF) × [10^-6]Нанофарад нФ (nF) × [10^-9]Пикофарад пФ (pF) × [10^-12]Фемтофарад фФ (fF) × [10^-15]Аттофарад аФ (aF) × [10^-18]Зептофарад зФ (zF) × [10^-21]Иоктофарад иФ (yF) × [10^-24]
Вам могут также быть полезны следующие сервисы |
Калькуляторы (физика) |
Механика |
Калькулятор вычисления скорости, времени и расстояния |
Калькулятор вычисления ускорения, скорости и перемещения |
Калькулятор вычисления времени движения |
Калькулятор времени |
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения. |
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния. |
Импульс тела. Калькулятор вычисления импульса, массы и скорости |
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы. |
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения |
Оптика |
Калькулятор отражения и преломления света |
Электричество и магнетизм |
Калькулятор Закона Ома |
Калькулятор Закона Кулона |
Калькулятор напряженности E электрического поля |
Калькулятор нахождения точечного электрического заряда Q |
Калькулятор нахождения силы F действующей на заряд q |
Калькулятор вычисления расстояния r от заряда q |
Калькулятор вычисления потенциальной энергии W заряда q |
Калькулятор вычисления потенциала φ электростатического поля |
Калькулятор вычисления электроемкости C проводника и сферы |
Конденсаторы |
Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе |
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе |
Калькулятор вычисления энергии W заряженного конденсатора |
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов |
Калькуляторы по астрономии |
Вес тела на других планетах |
Ускорение свободного падения на планетах Солнечной системы и их спутниках |
Конвертеры величин |
Конвертер единиц длины |
Конвертер единиц скорости |
Конвертер единиц ускорения |
Цифры в текст |
Калькуляторы (Теория чисел) |
Калькулятор выражений |
Калькулятор упрощения выражений |
Калькулятор со скобками |
Калькулятор уравнений |
Калькулятор суммы |
Калькулятор разложения числа на простые множители |
Калькулятор НОД и НОК |
Калькулятор НОД и НОК по алгоритму Евклида |
Калькулятор НОД и НОК для любого количества чисел |
Калькулятор делителей числа |
Представление многозначных чисел в виде суммы разрядных слагаемых |
Калькулятор деления числа в данном отношении |
Калькулятор процентов |
Калькулятор перевода числа с Е в десятичное |
Калькулятор экспоненциальной записи чисел |
Калькулятор нахождения факториала числа |
Калькулятор нахождения логарифма числа |
Калькулятор квадратных уравнений |
Калькулятор остатка от деления |
Калькулятор корней с решением |
Калькулятор нахождения периода десятичной дроби |
Калькулятор больших чисел |
Калькулятор округления числа |
Калькулятор свойств корней и степеней |
Калькулятор комплексных чисел |
Калькулятор среднего арифметического |
Калькулятор арифметической прогрессии |
Калькулятор геометрической прогрессии |
Калькулятор модуля числа |
Калькулятор абсолютной погрешности приближения |
Калькулятор абсолютной погрешности |
Калькулятор относительной погрешности |
Дроби |
Калькулятор интервальных повторений |
Учим дроби наглядно |
Калькулятор сокращения дробей |
Калькулятор преобразования неправильной дроби в смешанную |
Калькулятор преобразования смешанной дроби в неправильную |
Калькулятор сложения, вычитания, умножения и деления дробей |
Калькулятор возведения дроби в степень |
Калькулятор перевода десятичной дроби в обыкновенную |
Калькулятор перевода обыкновенной дроби в десятичную |
Калькулятор сравнения дробей |
Калькулятор приведения дробей к общему знаменателю |
Калькуляторы (тригонометрия) |
Калькулятор синуса угла |
Калькулятор косинуса угла |
Калькулятор тангенса угла |
Калькулятор котангенса угла |
Калькулятор секанса угла |
Калькулятор косеканса угла |
Калькулятор арксинуса угла |
Калькулятор арккосинуса угла |
Калькулятор арктангенса угла |
Калькулятор арккотангенса угла |
Калькулятор арксеканса угла |
Калькулятор арккосеканса угла |
Калькулятор нахождения наименьшего угла |
Калькулятор определения вида угла |
Калькулятор смежных углов |
Калькуляторы систем счисления |
Калькулятор перевода чисел из арабских в римские и из римских в арабские |
Калькулятор перевода чисел в различные системы счисления |
Калькулятор сложения, вычитания, умножения и деления двоичных чисел |
Системы счисления теория |
N2 | Двоичная система счисления |
N3 | Троичная система счисления |
N4 | Четырехичная система счисления |
N5 | Пятеричная система счисления |
N6 | Шестеричная система счисления |
N7 | Семеричная система счисления |
N8 | Восьмеричная система счисления |
N9 | Девятеричная система счисления |
N11 | Одиннадцатиричная система счисления |
N12 | Двенадцатеричная система счисления |
N13 | Тринадцатеричная система счисления |
N14 | Четырнадцатеричная система счисления |
N15 | Пятнадцатеричная система счисления |
N16 | Шестнадцатеричная система счисления |
N17 | Семнадцатеричная система счисления |
N18 | Восемнадцатеричная система счисления |
N19 | Девятнадцатеричная система счисления |
N20 | Двадцатеричная система счисления |
N21 | Двадцатиодноричная система счисления |
N22 | Двадцатидвухричная система счисления |
N23 | Двадцатитрехричная система счисления |
N24 | Двадцатичетырехричная система счисления |
N25 | Двадцатипятеричная система счисления |
N26 | Двадцатишестеричная система счисления |
N27 | Двадцатисемеричная система счисления |
N28 | Двадцативосьмеричная система счисления |
N29 | Двадцатидевятиричная система счисления |
N30 | Тридцатиричная система счисления |
N31 | Тридцатиодноричная система счисления |
N32 | Тридцатидвухричная система счисления |
N33 | Тридцатитрехричная система счисления |
N34 | Тридцатичетырехричная система счисления |
N35 | Тридцатипятиричная система счисления |
N36 | Тридцатишестиричная система счисления |
Калькуляторы площади геометрических фигур |
Площадь квадрата |
Площадь прямоугольника |
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ |
Калькуляторы (Комбинаторика) |
Калькулятор нахождения числа перестановок из n элементов |
Калькулятор нахождения числа сочетаний из n элементов |
Калькулятор нахождения числа размещений из n элементов |
Калькуляторы линейная алгебра и аналитическая геометрия |
Калькулятор сложения и вычитания матриц |
Калькулятор умножения матриц |
Калькулятор транспонирование матрицы |
Калькулятор нахождения определителя (детерминанта) матрицы |
Калькулятор нахождения обратной матрицы |
Длина отрезка. Онлайн калькулятор расстояния между точками |
Онлайн калькулятор нахождения координат вектора по двум точкам |
Калькулятор нахождения модуля (длины) вектора |
Калькулятор сложения и вычитания векторов |
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами |
Калькулятор скалярного произведения векторов через координаты |
Калькулятор векторного произведения векторов через координаты |
Калькулятор смешанного произведения векторов |
Калькулятор умножения вектора на число |
Калькулятор нахождения угла между векторами |
Калькулятор проверки коллинеарности векторов |
Калькулятор проверки компланарности векторов |
Генератор Pdf с примерами |
Тренажёры решения примеров |
Тренажёр таблицы умножения |
Тренажер счета для дошкольников |
Тренажер счета на внимательность для дошкольников |
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ. |
Тренажер решения примеров с разными действиями |
Тренажёры решения столбиком |
Тренажёр сложения столбиком |
Тренажёр вычитания столбиком |
Тренажёр умножения столбиком |
Тренажёр деления столбиком с остатком |
Калькуляторы решения столбиком |
Калькулятор сложения, вычитания, умножения и деления столбиком |
Калькулятор деления столбиком с остатком |
Генераторы |
Генератор примеров по математике |
Генератор случайных чисел |
Генератор паролей |
Калькулятор емкости последовательного соединения конденсаторов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения
Калькулятор позволяет рассчитать емкость нескольких конденсаторов, соединенных последовательно.
Пример. Рассчитать эквивалентную емкость двух соединенных последовательно конденсаторов 10 мкФ и 5 мкФ.
Входные данные
C1 фарад (Ф)микрофарад (мкФ)нанофарад (нФ)пикофарад (пФ)
C2 микрофарад (мкФ)
Добавить конденсатор
Поделиться
Поделиться ссылкой на этот калькулятор, включая входные параметры
Twitter Facebook Google+ VK
Закрыть
Выходные данные
Эквивалентная емкость
C микрофарад (мкФ)
Введите значения емкости в поля C1 и C 2, добавьте при необходимости новые поля, выберите единицы емкости (одинаковые для всех полей ввода) в фарадах (Ф), миллифарадах (мФ), микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ) и нажмите на кнопку Рассчитать.
1 мФ = 0,001 Ф. 1 мкФ = 0,000001 = 10⁻⁶ Ф. 1 нФ = 0,000000001 = 10⁻⁹ Ф. 1 пФ = 0,000000000001 = 10⁻¹² Ф.
В соответствии со вторым правилом Кирхгофа, падения напряжения V₁, V₂ and V₃ на каждом из конденсаторов в группе из трех соединенных последовательно конденсаторов в общем случае различные и общая разность потенциалов V равна их сумме:
По определению емкости и с учетом того, что заряд Q группы последовательно соединенных конденсаторов является общим для всех конденсаторов, эквивалентная емкость Ceq всех трех конденсаторов, соединенных последовательно, определяется как
или
Для группы из n соединенных последовательно конденсаторов эквивалентная емкость Ceq равна величине, обратной сумме величин, обратных емкостям отдельных конденсаторов:
или
Эта формула для Ceq и используется для расчетов в этом калькуляторе. Например, общая емкость соединенных последовательно трех конденсаторов емкостью 10, 15 and 20 мкФ будет равна 4,62 мкФ:
Если конденсаторов только два, то их общая емкость определяется по формуле
или
Если имеется n соединенных последовательно конденсаторов с емкостью C, их эквивалентная емкость равна
Отметим, что для расчета общей емкости нескольких соединенных последовательно конденсаторов используется та же формула, что и для расчета общего сопротивления параллельно соединенных резисторов.
Отметим также, что общая емкость группы из любого количества последовательно соединенных конденсаторов всегда будет меньше, чем емкость самого маленького конденсатора, а добавление конденсаторов в группу всегда приводит к уменьшению емкости.
Конденсаторы на печатной плате
Отдельного упоминания заслуживает падение напряжения на каждом конденсаторе в группе последовательно соединенных конденсаторов. Если все конденсаторы в группе имеют одинаковую номинальную емкость, падение напряжения на них скорее всего будет разным, так как конденсаторы в реальности будут иметь разную емкость и разный ток утечки. На конденсаторе с наименьшей емкостью будет наибольшее падение напряжения и, таким образом, он будет самым слабым звеном этой цепи.
Выравнивающие резисторы уменьшают разброс напряжений на отдельных конденсаторах
Для получения более равномерного распределения напряжений параллельно конденсаторам включают выравнивающие резисторы. Эти резисторы работают как делители напряжения, уменьшающие разброс напряжений на отдельных конденсаторах. Но даже с этими резисторами все равно для последовательного включения следует выбирать конденсаторы с большим запасом по рабочему напряжению.
Если несколько конденсаторов соединены параллельно, разность потенциалов V на группе конденсаторов равна разности потенциалов соединительных проводов группы. Общий заряд Q разделяется между конденсаторами и если их емкости различны, то заряды на отдельных конденсаторах Q₁, Q₂ and Q₃ тоже будут различными. Общий заряд определяется как
Конденсаторы, соединенные параллельно
По определению емкости, эквивалентная емкость группы конденсаторов равна
отсюда
или
Для группы n включенных параллельно конденсаторов
То есть, если несколько конденсаторов включены параллельно, их эквивалентная емкость определяется путем сложения емкостей всех конденсаторов в группе.
Возможно, вы заметили, что конденсаторы ведут себя противоположно резисторам: если резисторы соединены последовательно, их общее сопротивление всегда будет выше сопротивлений отдельных резисторов, а в случае конденсаторов всё происходит с точностью до наоборот.
Конденсаторы на печатной плате
Автор статьи: Анатолий Золотков
емкостный калькулятор
, созданный Luciano Mino
Последнее обновление: 04 июля, 2022
Содержание:
- Определение емкостной рассчитайте емкость плоского конденсатора или найдите расстояние между пластинами .
В этой короткой статье ниже мы кратко опишем:
- Что такое и как рассчитать емкость;
- Формула емкости плоского конденсатора; и
- Что такое единицы измерения емкости.
Продолжайте читать, чтобы узнать больше!
Определение емкости
Емкость объекта — это его способность накапливать электрический заряд. Это отношение между накопленным зарядом и разностью потенциалов между двумя проводниками внутри.
Чем выше емкость, тем большее количество заряда можно сохранить при той же разности потенциалов.
Давайте теперь посмотрим, как найти емкость конденсатора и какие единицы измерения емкости.
Как рассчитать емкость
В общем случае емкость определяется как:
C=QVC = \frac{Q}{V}C=VQ
где:
- CCC – емкость в фарадах (Ф) . Конденсатор с зарядом 1 кулон при разности потенциалов 1 вольт имеет емкость 1 фарад.
- QQQ — электрический заряд внутри конденсатора.
- VVV – разность потенциалов.
Для плоского конденсатора мы можем заменить эти переменные другими, с которыми легче работать. Таким образом, формула емкости принимает вид:
C=εAsC = \frac{ε A}{s}C=sεA
, где:
- AAA – площадь пластин в м². Наш конвертер площадей может помочь вам с этим шагом, или вы можете изменить единицы измерения, используя встроенный конвертер единиц калькулятора емкости.
- sss — расстояние между пластинами в м.
- εεε — диэлектрическая проницаемость материала между пластинами в фарадах на метр. Диэлектрическая проницаемость вакуума составляет 8,854 пФм8,854\ \frac{\text{пФ}}{\text{м}}8,854 мпФ.
💡 Вы можете ввести любое значение диэлектрической проницаемости, используя расширенный режим
Пример
Допустим, у нас есть плоский конденсатор емкостью 12 пФ12\ \text{пФ}12 пФ с пластинами площадью 10 см²10\ \text{см²}10 см², и мы хотим определить, насколько близко расположены эти пластины. Как мы делаем это?
Во-первых, мы должны изменить формулу емкости, чтобы найти недостающий параметр:
s=εACs = \frac{ε A}{C}s=CεA
диэлектрическая проницаемость вакуума, 8,854 пФм8,854\ \\frac{\text{пФ}}{\text{м}}8,854 мпФ), чтобы получить расстояние между пластинами конденсатора.
Результат:
с≃0,74 мм \simeq 0,74\ \text{мм}с≃0,74 мм
🙋 Не забудьте преобразовать все в м , м² , м² , 90 016 F , 90 015 F , 90 015 F 0,74 мм перед заменой значений в уравнении.
Luciano Mino
Калькулятор конденсаторов серии
• Электрические, радиочастотные и электронные калькуляторы • Онлайн-конвертеры единиц измерения
Этот калькулятор последовательной емкости определяет емкость нескольких последовательно соединенных конденсаторов.
Пример: Рассчитайте эквивалентную емкость двух последовательно соединенных конденсаторов емкостью 10 мкФ и 5 мкФ.
Вход
C 1 FARAD (F) MicroFarad (μF, UF) Nanofarad (NF) Picofarad (PF)
C 2 MICROFARAD (Z µF.).
Доля
Выход
Эквивалентная емкость
C микрофарад (мкФ, мкФ)
Введите значения емкости в поля C 1 и C 2 , при необходимости добавьте новые поля, выберите единицу измерения емкости в фарадах (Ф), миллифарадах (мФ), микрофарадах (мкФ), нанофарадах (нФ) или пикофарадах (пФ) и нажмите или коснитесь значка Кнопка «Рассчитать «.
1 мФ = 0,001 Ф. 1 мкФ = 0,000001 = 10⁻⁶ Ф. 1 нФ = 0,000000001 = 10⁻⁹ Ф. 1 пФ = 0,000000000001 = 10⁻¹² Ф. V₁ , V₂ и V₃ на каждом конденсаторе в группе из трех последовательно соединенных конденсаторов, как правило, различны, и общее падение потенциала В равно их сумме:
По определению емкости и поскольку заряд Q группы последовательно соединенных конденсаторов является общим для всех конденсаторов, эквивалентная емкость C экв. трех конденсаторов соединенных последовательно, определяется как
или
Для группы из n конденсаторов, соединенных последовательно, эквивалентная емкость C eq является обратной величиной суммы обратных величин емкостей отдельных конденсаторов:
или
Эта формула для C eq используется для расчета в этом калькуляторе. Например, три последовательно соединенных конденсатора емкостью 10, 15 и 20 мкФ дадут 4,62 мкФ:
. Только два последовательных конденсатора:
или
.0147 C соединены последовательно, тогда эквивалентная емкость равна
Обратите внимание, что формула для расчета общей емкости нескольких последовательно соединенных конденсаторов такая же, как и для расчета сопротивления группы резисторов, соединенных параллельно.
Также обратите внимание, что для группы, содержащей любое количество последовательно соединенных конденсаторов, эквивалентная емкость всегда меньше, чем у наименьшего конденсатора в группе конденсаторов, и добавление любого нового конденсатора всегда будет уменьшать эквивалентную емкость группы.
Конденсаторы на печатной плате
Что касается падения напряжения на каждом конденсаторе, то это отдельная история. Даже если все последовательно соединенные конденсаторы одинаковы, падение напряжения может быть разным, поскольку нельзя ожидать, что конденсаторы будут иметь точно такую же емкость и ток утечки. Конденсатор с наименьшей емкостью будет воспринимать наибольшее напряжение и, таким образом, будет самым слабым звеном в цепи.
Балансировочные резисторы снижают влияние колебаний емкости
Чтобы обеспечить равномерное распределение напряжения при последовательном соединении конденсаторов, к каждому конденсатору часто добавляют мощные балансировочные резисторы, чтобы обеспечить равномерное распределение напряжения. Резисторы действуют как делитель напряжения и уменьшают влияние изменения емкости. Даже с этими резисторами лучше оставить значительный запас по рабочему напряжению конденсаторов.
Если несколько конденсаторов соединены параллельно , разность потенциалов В на конденсаторах одинаково и равно разности потенциалов между соединительными проводами. Суммарный заряд Q делится между конденсаторами и если их емкости разные, то и отдельные заряды Q₁ , Q₂ и Q₃ тоже будут разными. Общий заряд определяется как
Конденсаторы, соединенные параллельно
Учитывая, что по определению емкости эквивалентная емкость
Мы получим
или
для N , подключенные параллельно,
, что, если несколько конденсаторов соединены параллель, затем их эквивалент определяет, что несколько кабитов.