Расчет емкости конденсатора для выпрямителя: Он-лайн калькулятор расчёта сглаживающего конденсатора выпрямителя.

Выпрямитель и простейший блок питания, как это сделать самому

Блок питания (БП) — устройство, предназначенное для формирования напряжения, необходимого системе, из напряжения электрической сети.

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Uа=Uд*√2

Амплитудное напряжение в сети 220В равняется:

220*1.41=310

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

Их две:

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

t=RC,

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

C=3200*Iн/Uн*Kп,

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

2. Диодный мост;

3. Конденсатор.

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

Важно:

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Полная версия даташита https://www.jameco.com/Jameco/Products/ProdDS/889305.pdf

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1. 5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Ранее ЭлектроВести писали, что компании Nissan Energy и OPUS Campers представили любопытную новинку — концептуальный автомобиль-кемпер Nissan x OPUS. Главная идея Nissan x OPUS заключается в том, чтобы обеспечить путешественников электроэнергией вдали от цивилизации. Для этого предлагается использовать отработанные аккумуляторные батареи электромобилей.

По материалам: electrik.info.

Полупроводниковые выпрямители блоков питания, схемы, онлайн расчёт



Классификация, свойства, схемы, онлайн калькулятор.

Расчёт ёмкости сглаживающего конденсатора.



«- Почему пульт не работает?

  — Я, конечно, не электрик, но, по-моему, пульт не работает, потому что телевизора нет».

— А для чего нам ещё «нахрен не упал» профессиональный электрик?

— Для чего? Да много для чего! Например, для того, чтобы быть в курсе, что без источника питания, а точнее без преобразователя
сетевого переменного напряжения в постоянное, не обходится ни одно электронное устройство.


— А электрик?

— Электрик, электрик. .. Что электрик?… «Электрик Сидоров упал со столба и вежливо выругался…»

Итак, приступим.
Выпрямитель — это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное.

Выпрямитель содержит трансформатор,
необходимый для преобразования напряжения сети Uc до величины U2, определяемой требованиями
нагрузки;
вентильную группу (в нашем случае диодную), которая обеспечивает одностороннее протекание тока в цепи нагрузки;
фильтр, передающий на выход схемы постоянную составляющую напряжения и сглаживающий пульсации напряжения.

Расчёт трансформатора — штука громоздкая, в рамках этой статьи рассматриваться не будет, поэтому сразу перейдём к основным и наиболее
распространённым схемам выпрямителей блоков питания радиоэлектронной аппаратуры.

В процессе повествования давайте сделаем допущение, что под величинами переменных напряжений и токов в цепях выпрямителей мы будем
подразумевать их действующие (эффективные) значения:

Uдейств = Uампл/√2

и
Iдейств = Iампл/√2
.


Именно такие значения приводятся в паспортных характеристиках обмоток трансформаторов, да и большинство измерительных приборов
отображают — не что иное, как аккурат эффективные значения сигналов переменного тока.

Однополупериодный выпрямитель.


Рис.1

На Рис.1 приведена однофазная однополупериодная схема выпрямления, а также осциллограммы напряжений в различных точках
(чёрным цветом — напряжение на нагрузке при отсутствии сглаживающего конденсатора С1, красным — с конденсатором).

В данном типе выпрямителя напряжение с вторичной обмотки трансформатора поступает в нагрузку через диод только в положительные
полупериоды переменного напряжения. В отрицательные полупериоды полупроводник закрыт, и напряжение в нагрузку подаётся только с
заряженного в предыдущий полупериод конденсатора.

Однополупериодная схема выпрямителя применяется крайне редко и только для питания цепей с низким током потребления ввиду высокого уровня
пульсаций выпрямленного напряжения, низкого КПД, и неэффективного использования габаритной мощности трансформатора.

Здесь обмотка трансформатора должна обеспечивать величину тока, равную удвоенному значению максимального тока в нагрузке
Iобм = 2×Iнагр
 и напряжение холостого хода
~U2 ≈ 0,75×Uн
.

При выборе диода D1 для данного типа схем, следует придерживаться следующих его параметров:

Uобр > 3,14×Uн
  и  
Iмакс > 3,14×Iн
.

Едем дальше.
Двухполупериодный выпрямитель с нулевой точкой.


Рис.2

Схема, приведённая на Рис.2, является объединением двух противофазных однополупериодных выпрямителей, подключённых к общей
нагрузке.
В одном полупериоде переменного напряжения ток в нагрузку поступает с верхней половины вторичной обмотки через открытый диод D1,
в другом полупериоде — с нижней, через второй открытый диод D2.

Как и любая двухполупериодная, эта схема выпрямителя имеет в 2 раза меньший уровень пульсации по сравнению с однополупериодной
схемой. К недостаткам следует отнести более сложную конструкцию трансформатора и такое же, как в однополупериодной схеме — нерациональное
использование трансформаторной меди и стали.

Каждая из обмоток трансформатора должна обеспечивать величину тока, равную значению максимального тока в нагрузке
Iобм = Iнагр
 и напряжение холостого хода
~U2 ≈ 0,75×Uн
.

Полупроводниковые диоды D1 и D2 должны обладать следующими параметрами:

Uобр > 3,14×Uн
  и  
Iмакс > 1,57×Iн
.

И наконец, классика жанра —
Мостовые схемы двухполупериодных выпрямителей.


Рис.3

На Рис. 3 слева изображена схема однополярного двухполупериодного мостового выпрямителя с использованием одной обмотки
трансформатора.
Графики напряжений на входе и выходе выпрямителя аналогичны осциллограммам, изображённым на Рис.2.


Во время положительного полупериода переменного напряжения ток протекает через цепь, образованную D2 и D3, во время отрицательного —
через цепь D1 и D4. В обоих случаях направление тока, протекающего через нагрузку, одинаково.

Если сравнивать данную схему с предыдущей схемой выпрямителя с нулевой точкой, то мостовая имеет более простую конструкцию трансформатора при таком
же уровне пульсаций, менее жёсткие требования к обратному напряжению диодов, а главное — более рациональное использование
трансформатора и возможность уменьшения его габаритной мощности.


К недостаткам следует отнести необходимость увеличения числа диодов, что приводит к повышенным тепловым потерям за счёт большего падения
напряжения в выпрямителе.

Обмотка трансформатора должна обеспечивать величину тока, равную
Iобм = 1,41×Iнагр
 и напряжение холостого хода
~U2 ≈ 0,75×Uн
.

Полупроводниковые диоды следует выбирать исходя из следующих соображений:

Uобр > 1,57×Uн
  и  
Iмакс > 1,57×Iн
.

При наличии у трансформатора двух одинаковых вторичных обмоток, или одной с отводом от середины выводом, однополярная схема
преобразуется в схему двуполярного выпрямителя со средней точкой (Рис.3 справа).

Естественным образом, диоды в двуполярном исполнении должны выбираться исходя из двойных значений
Uобр и
Iмакс по отношению к однополярной схеме.

Значения Uобр и
Iмакс приведены исходя из величин
наибольшего (амплитудного) значения обратного напряжения, приложенного к одному диоду, и наибольшего (амплитудного) значения
тока через один диод при отсутствии сглаживающих фильтров на выходе.

Конденсатор С1 во всех схемах — это простейший фильтр, выделяющий постоянную составляющую напряжения и сглаживающий
пульсации напряжения в нагрузке.

Для выпрямителей, не содержащих стабилизатор, его ёмкость рассчитывается по формулам:
С1 = 6400×Iн/(Uн×Кп)
для однополупериодных выпрямителей и
С1 = 3200×Iн/(Uн×Кп)
— для двухполупериодных,

где Кп — это
коэффициент пульсаций, численно равный отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей.

Для стабилизированных источников питания ёмкость С1 можно уменьшить в 5-10 раз.

«Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным
током вполне определённой «чистоты»:

10-3… 10-2   (0,1-1%) — малогабаритные транзисторные радиоприёмники и магнитофоны,

10-4. .. 10-3   (0,01-0,1%) — усилители радио и промежуточной частоты,

10-5… 10-4   (0,001-0,01%) — предварительные каскады усилителей звуковой частоты и микрофонных усилителей.» —
авторитетно учит нас печатное издание.

Ну и под занавес приведём незамысловатую онлайн таблицу.

КАЛЬКУЛЯТОР РАСЧЁТА ВЫПРЯМИТЕЛЯ ДЛЯ БЛОКА ПИТАНИЯ.









   Выбор схемы выпрямителя  
 &nbsp
Рис.1Рис.2Рис.3 1-полярнРис.3 2-полярн

   Переменное входное напряжение U2 (В)  

     

   Максимальный ток нагрузки Iн (А)  

     

   Пульсации выходного напряжения (%)  

     

  

   Выходное напряжение Uн на холостом ходу (В)   

     

   Выходное напряжение Uн при максимальном токе (В)   

     

   Параметр диодов — максимальный прямой ток (А)   

     

   Параметр диодов — максимальное обратное напряжение (В)   

     

   Ёмкость конденсатора С1 (МкФ)   

     

А на следующей странице рассмотрим сглаживающие фильтры силовых выпрямителей, не только ёмкостные, но и индуктивные, а также
активные фильтры на биполярных транзисторах.





 

Источник питания

— Расчет емкости двухполупериодного выпрямителя

спросил

Изменено
5 лет, 3 месяца назад

Просмотрено
52к раз

\$\начало группы\$

Для создания двухполупериодного выпрямителя на 100 ампер, 50 вольт, как мне рассчитать емкость цепи, чтобы избежать пульсаций напряжения? Я имею в виду, какой размер конденсатора я должен использовать?

  • блок питания

\$\конечная группа\$

2

\$\начало группы\$

Вот схема, на которую, как я полагаю, вы ссылаетесь: —

А вот формула: —

Это приблизительная формула, потому что она предполагает, что разряд конденсатора между перезарядками является линейным (на самом деле это экспоненциальный), но разумным. при пульсациях до 10%.

Таким образом, для 100 ампер при пульсирующем напряжении (скажем) 5 Впик-пик при частоте 60 Гц емкость составляет 0,333 фарад.

Однако, учитывая вашу потребность в мощности (5 кВт), я настоятельно рекомендую использовать трехфазный трансформатор и трехфазный мостовой выпрямитель, чтобы упростить жизнь.

\$\конечная группа\$

2

\$\начало группы\$

Вы не можете избежать пульсаций, но вы можете сделать их достаточно маленькими, чтобы их можно было регулировать.

Для емкости резервуара:

$$C=\frac{I\ t}{\Delta V}$$

Где:

C – емкость в фарадах,

I – постоянный ток нагрузки в амперах ,

\$t\$ — период двухполупериодного выпрямленного сигнала в секундах, а

\$\Delta V\$ — допустимая пульсация на нагрузке, в вольтах.

В вашем случае, если вы работаете с сетью 50 Гц и можете выдержать, скажем, 1 вольт пульсации, то

$$C=\frac{100A\times 0. 01s}{1V} = {1F}$ $

\$\конечная группа\$

1

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Схемы сглаживания конденсаторов и расчеты » Electronics Notes

Резервуарные конденсаторы

используются для сглаживания необработанной формы выпрямленной волны в источнике питания — важно выбрать правильный конденсатор с правильным номиналом и номинальным током пульсаций.


Схемы источника питания. Учебное пособие. Включает:
Обзор электроники источника питания.
Линейный источник питания
Импульсный источник питания
Сглаживание конденсатора
Схемы выпрямителя переменного тока
Схемы регулятора напряжения
Схема стабилизатора напряжения стабилитрона
Защита от перенапряжения
Характеристики блока питания
Цифровая мощность
Шина управления питанием: PMbus
Бесперебойный источник питания


В источнике питания, будь то линейный источник питания или импульсный источник питания, использующий источник питания переменного тока и диодные выпрямители, необработанный выпрямленный выходной сигнал обычно сглаживается с помощью накопительного конденсатора перед подачей на какие-либо регуляторы или другие подобные устройства. электронная схема.

Алюминиевые электролитические конденсаторы

идеально подходят для работы в качестве сглаживающих конденсаторов, поскольку многие электролиты способны обеспечить достаточно высокую емкость и выдерживать уровень пульсаций тока, необходимый для сглаживания формы волны.

Типовой электролитический конденсатор, используемый для сглаживания

По сути, сглаживающая схема заполняет основные провалы в необработанной выпрямленной форме сигнала, чтобы линейный регулятор или схема импульсного источника питания могли работать правильно.

Сглаживающий конденсатор изменяет форму волны с той, которая изменяется от нуля до пикового напряжения в течение цикла входящей формы волны мощности, на такую, где изменения напряжения намного меньше. По сути, они сглаживают форму волны, отсюда и название.

Поскольку сглаживающие конденсаторы используются как в источниках питания с линейной стабилизацией, так и в импульсных источниках питания, они составляют важную часть многих электронных схем.

Основы сглаживания конденсаторов

Конденсаторное сглаживание используется для большинства типов источников питания, будь то линейный регулируемый источник питания, импульсный источник питания или даже просто сглаженный и нерегулируемый источник питания.

Необработанный постоянный ток, подаваемый диодным выпрямителем сам по себе, будет состоять из серии полусинусоидальных волн с напряжением, изменяющимся от нуля до √2 среднеквадратичного напряжения (без учета диодных и других потерь).

Форма волны такого типа не будет использоваться для питания цепей, потому что любые аналоговые схемы будут иметь огромный уровень пульсаций, наложенных на выход, а любые цифровые схемы не будут работать, потому что питание будет отключаться каждые полпериода.

Сглаживание конденсатора обеспечивает правильную работу следующих ступеней линейного регулируемого источника питания или импульсного источника питания.

Для сглаживания выходного сигнала выпрямителя используется накопительный конденсатор, который устанавливается параллельно выходу репитера и параллельно нагрузке.

Сглаживание работает, потому что конденсатор заряжается, когда напряжение от выпрямителя становится выше напряжения конденсатора, а затем, когда напряжение выпрямителя падает, конденсатор обеспечивает требуемый ток за счет накопленного заряда.

Двухполупериодный выпрямитель со сглаживающим конденсатором

Таким образом, конденсатор может обеспечить заряд, когда он не доступен от выпрямителя, и, соответственно, напряжение изменяется значительно меньше, чем если бы конденсатор не присутствовал.

Сглаживание конденсатора не обеспечит общей стабильности напряжения, всегда будет некоторый разброс напряжения. На самом деле, чем выше емкость конденсатора, тем больше сглаживание, а также чем меньше потребляемый ток, тем лучше сглаживание.

Сглаживающее действие накопительного конденсатора

Следует помнить, что единственный путь разряда конденсатора, помимо внутренней утечки, лежит через нагрузку на выпрямитель/систему сглаживания. Диоды предотвращают обратный ток через трансформатор и т. д.

Еще один момент, о котором следует помнить, заключается в том, что сглаживание конденсатора не дает какой-либо формы регулирования, и напряжение будет варьироваться в зависимости от нагрузки и любых изменений входного сигнала.

Регулировка напряжения может быть обеспечена линейным стабилизатором или импульсным источником питания.

Значение сглаживающего конденсатора

Выбор емкости конденсатора должен соответствовать ряду требований. В первом случае значение должно быть выбрано так, чтобы его постоянная времени была намного больше временного интервала между последовательными пиками выпрямленного сигнала:

Rнагрузка ⋅ C >> 1f

Где:
  R нагрузка = общее сопротивление нагрузки для источника питания
Кл = емкость конденсатора в фарадах
f = частота пульсаций – она будет в два раза выше частоты сети при использовании двухполупериодного выпрямителя.

Сглаживающий пульсации напряжения конденсатора

Поскольку на выходе выпрямителя, использующего схему сглаживающего конденсатора, всегда будут присутствовать пульсации, необходимо иметь возможность приблизительно оценить их значение. Слишком большое указание конденсатора приведет к дополнительным затратам, размеру и весу, а занижение приведет к снижению производительности.

Размах пульсаций на выходе сглаживающего конденсатора источника питания (двухполупериодный)

На приведенной выше диаграмме показаны пульсации двухполупериодного выпрямителя со сглаживающим конденсатором. Если бы использовался однополупериодный выпрямитель, то половина пиков отсутствовала бы, а пульсации были бы примерно в два раза больше напряжения.

В случаях, когда пульсации малы по сравнению с напряжением питания, что почти всегда бывает, можно рассчитать пульсации, зная условия цепи:

Двухполупериодный выпрямитель

Vripple=Iload2  f  C

Однополупериодный выпрямитель

Vripple=Iloadf C

Эти уравнения обеспечивают более чем достаточную точность. Хотя разряд конденсатора для чисто резистивной нагрузки является экспоненциальным, погрешность, вносимая линейным приближением, очень мала при малых значениях пульсаций.

Также стоит помнить, что вход регулятора напряжения представляет собой не чисто резистивную нагрузку, а нагрузку постоянного тока. Наконец, допуски электролитических конденсаторов, используемых для сглаживающих цепей выпрямителей, велики — в лучшем случае ± 20%, и это скроет любые неточности, вносимые допущениями в уравнениях.

Пульсирующий ток

Двумя основными характеристиками конденсатора являются его емкость и рабочее напряжение. Однако для приложений, где могут протекать большие уровни тока, как в случае сглаживающего конденсатора выпрямителя, важен третий параметр — его максимальный ток пульсаций.

Ток пульсаций не просто равен току питания. Есть два сценария:

  • Ток разрядки конденсатора:   В цикле разрядки максимальный ток, подаваемый конденсатором, возникает, когда выходной сигнал схемы выпрямителя падает до нуля. В этот момент весь ток из цепи поступает от конденсатора. Это равно полному току цепи.

    Пиковый ток, подаваемый конденсатором в фазе разряда

  • Ток заряда конденсатора:   В цикле заряда сглаживающего конденсатора конденсатор должен восполнить весь потерянный заряд, но это может быть достигнуто только тогда, когда напряжение от выпрямителя превышает напряжение от сглаживающего конденсатора. Это происходит только в течение короткого периода цикла. Следовательно, ток в этот период намного выше. Чем больше конденсатор, тем лучше он уменьшает пульсации и тем короче период заряда.

    Более короткое время зарядки приводит к очень высоким уровням пикового тока, так как сглаживающий конденсатор должен поглотить достаточный заряд для периода разрядки за очень короткое время.

    Период зарядки конденсатора источника питания

Сети сглаживания пи секций

В некоторых приложениях линейный регулятор напряжения не используется, может потребоваться улучшенная форма плавного регулятора. Этого можно добиться, используя два конденсатора и последовательную катушку индуктивности или резистор.

Подход со сглаженным питанием используется в некоторых высоковольтных системах и в некоторых других специализированных областях, но он не так распространен, как источники питания с линейной стабилизацией и импульсные источники питания, которые обеспечивают гораздо лучшее регулирование и сглаживание.

Этот подход также можно увидеть во многих старинных беспроводных устройствах, где использование линейного регулируемого источника питания было невозможно.

Фильтр сглаживания π-секций

Существует два варианта системы сглаживания π-секций. С двумя конденсаторами между линией и землей последовательный элемент был либо катушкой индуктивности, либо резистором. Катушка индуктивности стоила намного дороже и давала лучшую производительность, но резистор был гораздо более дешевым вариантом, хотя и рассеивал большую мощность.

Сглаживающие конденсаторы являются важными элементами как линейных, так и импульсных источников питания, поэтому они широко используются.

При выборе накопительного конденсатора для сглаживания в источнике питания значение емкости важно не только для обеспечения требуемого снижения напряжения пульсаций, но также очень важно обеспечить, чтобы номинальный ток пульсаций конденсатора не превышался. Если потребляется слишком большой ток, конденсатор нагревается и срок его службы сокращается, а в крайних случаях он может выйти из строя, иногда катастрофически.