Расчет батарей отопления частного дома: Как произвести расчет секций радиаторов отопления
Содержание
Расчет радиаторов отопления по площади частного дома – определяем количестко секций + Видео
С выбором радиаторов отопления сегодня никаких проблем. Тут тебе и чугунные, и алюминиевые, и биметаллические – выбирай, какие хочешь. Однако сам факт покупки дорогих радиаторов особенной конструкции – еще не гарантия того, что в вашем доме будет тепло. В этом случае играет роль и качество, и количество. Давайте разберемся, как правильно рассчитать радиаторы отопления.
Расчет всему голова – отталкиваемся от площади
Неправильный расчет количества радиаторов может привести не только к недостатку тепла в помещении, но и к чересчур большим счетам за отопление и слишком высокой температуре в комнатах. Расчет следует производить как во время самой первой установки радиаторов, так и при замене старой системы, где, казалось бы, с количеством секций давно все понятно, поскольку теплоотдача радиаторов может существенно отличаться.
Разные помещения – разные расчеты. Например, для квартиры в многоэтажном доме можно обойтись самыми простыми формулами или же расспросить соседей об их опыте отопления. В большом частном доме простые формулы не помогут – нужно будет учесть множество факторов, которые в городских квартирах попросту отсутствуют, например, степень утепления дома.
Самое главное – не доверяйте цифрам, озвученным наобум всевозможными “консультантами”, которые на глаз (даже не видя помещения!) называют вам количество секций для отопления. Как правило, оно значительно завышено, из-за чего вы будете постоянно переплачивать за лишнее тепло, которое буквально будет уходить в открытую форточку. Рекомендуем использовать несколько способов расчета количества радиаторов.
Простые формулы – для квартиры
Жители многоэтажных домов могут использовать достаточно простые способы расчетов, которые совершенно не подходят для частного дома. Самый простой расчет радиаторов отопления не блещет высокой точностью, однако он подойдет для квартир со стандартными потолками не выше 2. 6 м. Учтите, что для каждой комнаты проводится отдельный расчет количества секций.
За основу берется утверждение, что на отопление квадратного метра комнаты нужно 100 Вт тепловой мощности радиатора. Соответственно, для того, чтобы вычислить количество тепла, необходимое для комнаты, умножаем ее площадь на 100 Вт. Так, для комнаты площадью 25 м2 необходимо приобрести секции с совокупной мощностью 2500 Вт или 2,5 кВт. Производители всегда указывают теплоотдачу секций на упаковке, например, 150 Вт. Наверняка вы уже поняли, что делать дальше: 2500/150 = 16,6 секций
Результат округляем в большую сторону, впрочем, для кухни можно округлить и в меньшую – помимо батарей, там еще будет нагревать воздух плитка, чайник.
Также следует учесть возможные потери тепла в зависимости от расположения комнаты. Например, если это помещение, расположенное на углу здания, то тепловую мощность батарей можно смело увеличивать на 20 % (17 *1,2 = 20,4 секций), такое же количество секций понадобится и для комнаты с балконом. Учтите, что если вы намерены запрятать радиаторы в нишу или скрыть их за красивым экраном, то вы автоматически теряете до 20 % тепловой мощности, которую придется компенсировать количеством секций.
Расчеты от объема – что говорит СНиП?
Более точное количество секций можно высчитать, учитывая высоту потолков – этот способ особенно актуален для квартир с нестандартной высотой комнат, а также для частного дома в качестве предварительного расчета. В этом случае мы определим тепловую мощность, исходя из объема помещения. Согласно нормам СНиП, для обогрева одного кубического метра жилой площади в стандартном многоэтажном доме необходим 41 Вт тепловой энергии. Это нормативное значение необходимо умножить на общий объем, который можно получить, перемножим высоту комнаты на ее площадь.
Например, объем комнаты площадью 25 м2 с потолками 2,8 м составляет 70 м3. Эту цифру умножаем на стандартные 41 Вт и получаем 2870 Вт. Дальше действуем, как и в предыдущем примере – делим общее количество Вт на теплоотдачу одной секции. Так, если теплоотдача равна 150 Вт, то количество секций – приблизительно 19 (2870/150 = 19,1). К слову, ориентируйтесь на минимальные показатели теплоотдачи радиаторов, ведь температура носителя в трубах редко когда в наших реалиях соответствует требованиям СНиП. То есть, если в техпаспорте радиатора указаны рамки от 150 до 250 Вт, то по умолчанию берем меньшую цифру. Если вы сами отвечаете за отопление частного дома, то берите среднее значение.
Точные цифры для частных домов – учитываем все нюансы
Частные дома и большие современные квартиры никак не попадают под стандартные расчеты – слишком много нюансов нужно учесть. В этих случаях можно применить самый точный способ расчета, в котором эти нюансы как раз и учитываются. Собственно, формула сама по себе весьма простая – с такой справится и школьник, главное – правильно подобрать все коэффициенты, которые учитывают особенности дома или квартиры, влияющие на возможность сохранять или терять тепловую энергию. Итак, вот наша точная формула:
- КТ = N*S*K1*K2*K3*K4*K5*K6*K7
- КТ – это количество тепловой мощности в Вт, которое нам необходимо для отопления конкретной комнаты;
- N – 100 Вт/кв.м, стандартное количество тепла на метр квадратный, к которому мы и будем применять понижающие или повышающие коэффициенты;
- S – площадь помещения, для которого мы будем рассчитывать количество секций.
Следующие коэффициенты имеют как свойство повышать количество тепловой энергии, так и понижать, в зависимости от условий комнаты.
- K1 – учитываем характер остекления окон. Если это окна с обычным двойным остеклением, коэффициент равен 1,27. Окна с двойным стеклопакетом – 1,0, с тройным – 0,85.
- K2 – учитываем качество теплоизоляции стен. Для холодных неутепленных стен этот коэффициент равен по умолчанию 1,27, для нормальной теплоизоляции (кладка в два кирпича) – 1,0, для хорошо утепленных стен – 0,85.
- K3 – учитываем среднюю температуру воздуха в пик зимних холодов. Так, для -10 °С коэффициент равен 0,7. На каждые -5 °С добавляем к коэффициенту 0,2. Так, для -25 °С коэффициент будет равен 1,3.
- K4 – принимаем во внимание соотношение пола и площади окон. Начиная с 10 % (коэффициент равен 0,8) на каждые следующие 10 % добавляем 0,1 к коэффициенту. Так, для соотношения 40 % коэффициент будет равен 1,1 (0,8 (10%) +0,1 (20%)+0,1(30%)+0,1(40%)).
- K5 – понижающий коэффициент, корректирующий количество тепловой энергии с учетом типа помещения, расположенного выше. За единицу берем холодный чердак, если чердак отапливаемый – 0,9, если над комнатой отапливаемое жилое помещение – 0,8.
- K6 – корректируем результат в сторону увеличения с учетом количества стен, контактирующих с окружающей атмосферой. Если 1 стена – коэффициент равен 1,1, если две – 1,2 и так далее до 1,4.
- K7 – и последний коэффициент, корректирующий расчеты относительно высоты потолков. За единицу берется высота 2,5, и на каждые полметра высоты прибавляется 0.05 к коэффициенту Таким образом, для 3 метров коэффициент – 1,05, для 4 – 1,15.
Благодаря этому расчету, вы получите количество тепловой энергии, которая необходима для поддержания комфортной среды обитания в частном доме или нестандартной квартире. Остается только разделить готовый результат на значение теплоотдачи выбранных вами радиаторов, чтобы определить количество секций.
- Автор: Михаил Малофеев
- Распечатать
Оцените статью:
(7 голосов, среднее: 3. 9 из 5)
Поделитесь с друзьями!
Как рассчитать количество радиаторов отопления в доме
В связи с нестабильной ситуацией на рынке сырья и материалов, цены на сайте корректируются. Пожалуйста, уточняйте актуальную стоимость на продукцию у менеджеров. Благодарим за понимание!
Добиться от системы отопления полной эффективности и экономичности — нормальное желание хозяина дома. Как рассчитать количество радиаторов отопления в доме? Существует ли универсальная формула, позволяющая получить точный ответ и сразу заказать определенное количество приборов?
Да, формулы существуют, они разработаны с учетом действующих СНиП, но применить их конкретному частному дому без специальных знаний довольно сложно. Это стоит объяснить отдельно. Для расчета потребности в тепловой энергии применяется сложная система коэффициентов, в которой учитывается все, что может повлиять на обогрев — от площади комнаты до этажа и определенного типа радиаторов. Таким образом можно получить довольно точные значения, но в реальности это необходимо в случаях, когда речь идет о большом строительном проекте, поскольку общее количество приборов и выделяемое ими тепло с учетом потерь составляют внушительные суммы в денежном эквиваленте.
Способы и методики расчета количества радиаторов
Для частного дома, пусть и большого, такая точность не нужна, но узнать, сколько потребуется установить радиаторов, все же необходимо. Поэтому мы рассмотрим ответы в виде самых простых примеров:
- расчет количества радиаторов в системе отопления частного дома по объему помещений;
- расчет с учетом площади помещений;
- расчет с использованием простого калькулятора;
- описание некоторых поправочных коэффициентов, применяемых в профессиональном проектировании.
Любой из этих вариантов даст приемлемый по точности результат, а если вы все же хотите получить точные данные, то лучше поручить эту задачу профессионалу в области проектирования.
Какой тип радиаторов нам интересен
Для примера возьмем трубчатые стальные радиаторы КЗТО из серии Гармония — их параметры можно уверенно считать наиболее подходящими для подбора в частный дом. Варианты с чугунными, алюминиевыми, биметаллическими и панельными радиаторами демонстрируют крайности либо в цене, либо в эффективности теплоотдачи.
При изучении продукции в таблице с характеристиками радиаторов можно найти их мощность, количество секций и размеры. Поэтому мы не будем делать конкретный расчет, а приведем пример в виде описания порядка действий.
Расчет по объему помещения
Самый простой и доступный вариант расчетов количества радиаторов для частного дома учитывает объем помещения. При отступлении от стандартной высоты потолков в 2,7 м это дает возможность опираться на реальные размеры. Сначала узнаем объем помещения в метрах кубических — умножаем площадь на высоту. Для того, чтобы узнать потребность в тепловой энергии, можно применить средний вариант — 41 ватт на кубометр дает комфортную температуру примерно в 20 С даже в панельных многоэтажках. Умножаем 41 на объем помещения, подбираем радиатор по таблице, в которой указаны размеры, количество секций и тепловая мощность, делим цифру потребности на мощность одного прибора и получаем их количество для одного помещения.
Расчет по площади помещения
Теперь посмотрим, как рассчитать радиаторы отопления по площади. Здесь можно условно принять высоту потолков за 2,7 м , а потом ввести поправку, если помещение выше. Исходим из следующих условий:
- дом расположен в средней полосе России;
- используются трубчатые стальные радиаторы;
- площадь помещения известна;
- стены кирпичные, в два кирпича, с хорошей теплоизоляцией.
Для обогрева помещения в таких условиях достаточно затратить от 60 до 100 Ватт на квадратный метр. Принцип расчета тот же — находим в таблице радиатор КЗТО с подходящими нам размерами, узнаем там же его тепловую мощность, делим потребность на мощность прибора.
Может ли возникнуть ситуация, при которой в доме все равно будет прохладно? Может, например в зоне, где часто и подолгу держатся морозы. Тогда потребуется исходить из потребности 150 — 200 Ватт на квадратный метр. Но это еще не все — есть ряд факторов, которые влияют на теплопотери дома. Например, радиатор отопления для дачи, может работать в режиме с пониженной теплоотдачей из-за маломощного котла, а само строение окажется недостаточно утепленным.
Поправочные коэффициенты для точного расчета
Для того, чтобы учесть эти особенности, вводится еще ряд поправочных коэффициентов, на которые умножают полученное значение потребности в тепловой энергии. Во внимание принимается:
- площадь и количество окон;
- соотношение площади стен и остекления;
- наличие и утепление чердака;
- качество стен, характер теплоизоляции;
- расположение радиаторов в помещении;
- тепловой напор — разница между температурой в помещении и температурой радиаторов;
- тип системы отопления — двухтрубная или однотрубная.
Если вы решите, что необходимо учесть все особенности дома, то расчетом должен заниматься только специалист. Пример поправочных коэффициентов при расчете потребности в радиаторах отопления в одном помещении в зависимости от площади остекления и пола:
- 10% — 0,8
- 20% — 0,9
- 30% — 1,0
- 40% — 1,1
- 50% — 1,2
Пример расчета в зависимости от наличия теплоизоляции, если считать нормой стену в два кирпича:
- кирпичные стены — 1,0
- недостаточная (отсутствует) — 1,27
- хорошая — 0,8
Пример расчета в зависимости от того, сколько стен в помещении выходит наружу:
- внутреннее помещение — 1,0
- одна — 1,1
- две — 1,2
- три — 1,3
На профессиональном уровне учитывается очень много параметров, поэтому произвести такой расчет самостоятельно вам не удастся. Обратитесь к специалистам компании КЗТО, мы с удовольствием выполним этот расчет для Вас и подберем оптимальное количество и модели радиаторов отопления, учитывая все ваши пожелания.
20 Март 2018
Назад к списку
×
Внимание! Продолжая использовать наш сайт, вы даете согласие на обработку своих персональных данных, в том числе, файлов cookie. Если вы не хотите, чтобы ваши данные обрабатывались, просим вас покинуть сайт.
как рассчитать количество, калькулятор, видео и фото
Здесь вы узнаете:
- Тепловая мощность радиаторов отопления
- Биметаллические радиаторы
- Расчет площади
- Простой расчет
- 0 Очень точный расчет
- 0 Очень точный расчет система отопления включает в себя такой важный этап, как расчет радиаторов отопления по площади с помощью калькулятора или вручную. Он помогает рассчитать количество секций, необходимых для обогрева конкретного помещения. Берутся самые разные параметры, начиная от площади помещения и заканчивая характеристиками утепления. Правильность расчетов будет зависеть от:
- равномерность обогрева помещений;
- комфортная температура в спальнях;
- отсутствие холодных мест в домовладении.
Давайте посмотрим, как рассчитываются радиаторы отопления и что учитывается в расчетах.
Тепловая мощность радиаторов отопления
Расчет радиаторов отопления для частного дома начинается с подбора самих приборов. В ассортименте для потребителей представлены чугунные, стальные, алюминиевые и биметаллические модели, различающиеся по тепловой мощности (теплоотдаче). Какие-то из них греют лучше, какие-то хуже — тут стоит ориентироваться на количество секций и размер батарей. Посмотрим, какой тепловой мощностью обладают те или иные конструкции.
Радиаторы биметаллические
Радиаторы биметаллические секционные изготавливаются из двух компонентов — стали и алюминия. Их внутренний сердечник изготовлен из стали, устойчивой к высокому давлению, стойкой к гидравлическим ударам и агрессивным теплоносителям. … Алюминиевая «рубашка» наносится на стальной сердечник методом литья под давлением. Именно она отвечает за высокую теплоотдачу. В результате мы получаем своеобразный сэндвич, устойчивый к любым негативным воздействиям и характеризующийся приличной теплоотдачей.
Теплоотдача биметаллических радиаторов зависит от межосевого расстояния и от конкретно выбранной модели. Например, устройства от компании Rifar могут похвастаться тепловой мощностью до 204 Вт при межосевом расстоянии 500 мм. Аналогичные модели, но с межосевым расстоянием 350 мм имеют тепловую мощность 136 Вт. Для небольших радиаторов с межосевым расстоянием 200 мм теплоотдача составляет 104 Вт.Теплоотдача биметаллических радиаторов от других производителей может отличаться в меньшую сторону (в среднем 180-190 Вт при расстоянии между осями 500 мм). Например, максимальная тепловая мощность батарей Global составляет 185 Вт на секцию при межосевом расстоянии 500 мм.
Радиаторы алюминиевые
Тепловая мощность алюминиевых приборов практически не отличается от теплоотдачи биметаллических моделей. В среднем она составляет около 180-190 Вт на секцию при расстоянии между осями 500 мм. Максимальный показатель достигает 210 Вт, но нужно учитывать высокую стоимость таких моделей. Приведем более точные данные на примере Рифара:
- межосевое расстояние 350 мм — теплопередача 139 Вт;
- межосевое расстояние 500 мм — теплопередача 183 Вт;
- Межосевое расстояние 350 мм (с нижним подключением) — теплопередача 153 Вт.
Для изделий других производителей этот параметр может отличаться в ту или иную сторону.
Алюминиевые приборы предназначены для использования в составе индивидуальных систем отопления . Выполнены в простом, но привлекательном дизайне, отличаются высокой теплоотдачей и работают при давлении до 12-16 атм. Они не подходят для установки в централизованных системах отопления из-за недостаточной устойчивости к агрессивному теплоносителю и гидроударам.
Вы проектируете систему отопления для собственного дома? Советуем приобрести для этого алюминиевые батареи – они обеспечат качественный нагрев при своих минимальных размерах.
Радиаторы стальные пластинчатые
Алюминиевые и биметаллические радиаторы имеют секционную конструкцию. Поэтому при их использовании принято учитывать теплоотдачу одной секции. В случае неразборных стальных радиаторов учитывается теплоотдача всего устройства при определенных размерах. Например, теплоотдача двухрядного радиатора Kermi FTV-22 с нижним присоединением высотой 200 мм и шириной 1100 мм составляет 1010 Вт. Если взять Buderus Logatrend VK-Profil 22-500-900 панельный стальной радиатор, то его теплоотдача составит 1644 Вт.
При расчете радиаторов отопления частного дома необходимо записывать расчетную тепловую мощность для каждого помещения. На основании полученных данных закупается необходимое оборудование. При выборе стальных радиаторов обратите внимание на их ряд — при одинаковых габаритах, трехрядные модели имеют более высокую теплоотдачу, чем их однорядные аналоги .Радиаторы стальные, как панельные, так и трубчатые, могут использоваться в частных домах и квартирах — они выдерживают давление до 10-15 атм и устойчивы к агрессивным теплоносителям.
Чугунные радиаторы
Теплоотдача чугунных радиаторов 120-150 Вт в зависимости от расстояния между осями. У некоторых моделей этот показатель достигает 180 Вт и даже больше. Чугунные батареи могут работать при давлении теплоносителя до 10 бар, хорошо противостоя разрушительной коррозии. Их используют как в частных домах, так и в квартирах (не считая новостроек, где преобладают стальные и биметаллические модели).
При выборе чугунных батарей для отопления собственного дома необходимо учитывать теплоотдачу одной секции – исходя из этого приобретаются батареи с тем или иным количеством секций. Например, для чугунных батарей МС-140-500 с межосевым расстоянием 500 мм теплоотдача составляет 175 Вт. Мощность моделей с межосевым расстоянием 300 мм составляет 120 Вт.Чугун хорошо подходят для установки в частных домах, радуя долгим сроком службы, высокой теплоемкостью и хорошей теплоотдачей. Но нужно учитывать их недостатки:
- большой вес — 10 секций с межосевым расстоянием 500 мм весят более 70 кг ;
- неудобство в установке – этот недостаток плавно вытекает из предыдущего;
- высокая инерционность – способствует слишком долгому прогреву и ненужным затратам на выработку тепла.
Несмотря на некоторые недостатки, они до сих пор пользуются спросом.
Зачем нужен точный расчет
Теплоотдача приборов теплоснабжения зависит от материала изготовления и площади отдельных участков. От правильных расчетов зависит не только тепло в доме, но и сбалансированность и эффективность системы в целом: недостаточное количество установленных секций радиатора не обеспечит должного тепла в помещении, а чрезмерное количество секций ударит по вашим карман.
Для расчетов необходимо определиться с типом батарей и системой теплоснабжения. Например, расчет алюминиевых радиаторов отопления для частного дома отличается от других элементов системы. Радиаторы бывают чугунные, стальные, алюминиевые, алюминиевые анодированные и биметаллические:
- Наиболее известны чугунные батареи, так называемые «гармошки». Они прочны, устойчивы к коррозии, имеют мощность 160 Вт секции при высоте 50 см и температуре воды 70 градусов. Существенным недостатком этих устройств является неприглядный внешний вид, но современные производители выпускают гладкие и достаточно эстетичные чугунные батареи, сохраняя все достоинства материала и делая их конкурентоспособными.
- Алюминиевые радиаторы по тепловой мощности превосходят чугунные изделия, они долговечны, имеют малый собственный вес, что дает преимущество при монтаже. Единственный недостаток – подверженность кислородной коррозии. Для ее устранения принято производство радиаторов из анодированного алюминия.
- Стальные приборы не обладают достаточной тепловой мощностью, не подлежат разборке и увеличению сечения при необходимости, подвержены коррозии, поэтому не пользуются спросом.
- Биметаллические радиаторы отопления представляют собой комбинацию стальных и алюминиевых деталей. Теплоносители и крепежные элементы в них представляют собой стальные трубы и резьбовые соединения, закрытые алюминиевым кожухом. Недостатком является достаточно высокая стоимость.
По типу системы теплоснабжения различают однотрубное и двухтрубное подключение ТЭНов. В многоэтажных жилых домах в основном применяется однотрубная система теплоснабжения. Недостатком здесь является довольно значительная разница температуры входящей и выходящей воды на разных концах системы, что свидетельствует о неравномерном распределении тепловой энергии между аккумуляторными устройствами.
Для равномерного распределения тепловой энергии в частных домах может применяться двухтрубная система теплоснабжения, когда по одной трубе подается горячая вода, а по другой отводится остывшая.
Кроме того, точный расчет количества батарей отопления в частном доме зависит от схемы подключения приборов, высоты потолка, площади оконных проемов, количества наружных стен, типа помещения, ограждение приборов декоративными панелями и другие факторы.
Помните!
Необходимо правильно рассчитать необходимое количество радиаторов отопления в частном доме, чтобы гарантировать достаточное количество тепла в помещении и обеспечить экономию финансовых средств.
Расчет площади
Простая таблица расчета мощности радиатора для обогрева помещения определенной площади.
Как рассчитывается батарея отопления на квадратный метр отапливаемой площади? Для начала необходимо ознакомиться с основными параметрами, учитываемыми при расчетах, к которым относятся:
- тепловая мощность на обогрев 1 кв.м — 100 Вт;
- стандартная высота потолка — 2,7 м;
- одна внешняя стенка.
Исходя из таких данных, тепловая мощность, необходимая для обогрева помещения площадью 10 кв.м, составляет 1000 Вт. Полученная мощность делится на теплоотдачу одной секции — в итоге получаем необходимое количество секций (либо подбираем подходящий стальной панельный или трубчатый радиатор).
Для самых южных и самых холодных северных регионов используются дополнительные коэффициенты, как повышающие, так и понижающие, — о них мы поговорим далее.
Простой расчет
Таблица для расчета необходимого количества секций в зависимости от площади отапливаемого помещения и мощности одной секции.
Расчет количества секций радиатора с помощью калькулятора дает хорошие результаты. Приведем простейший пример для обогрева помещения площадью 10 кв м — если помещение не угловое и в нем установлены стеклопакеты, необходимая тепловая мощность составит 1000 Вт … Если мы хотим установить алюминиевые батареи с теплоотдачей 180 Вт, нам нужно 6 секций — просто делим полученную мощность на теплоотдачу одной секции.
Соответственно, если покупать радиаторы с теплоотдачей одной секции 200 Вт, то количество секций будет 5 шт. В помещении будут высокие потолки до 3,5 м? Тогда количество секций увеличится до 6 штук. Есть ли в комнате две внешние стены (угловая комната)? В этом случае необходимо добавить еще один раздел.
Также нужно учитывать запас тепловой мощности на случай слишком холодной зимы — он составляет 10-20% от расчетного.
Узнать информацию о теплоотдаче аккумуляторов можно из их паспортных данных. Например, расчет количества секций алюминиевых радиаторов отопления основан на расчете теплоотдачи одной секции. То же самое касается и биметаллических радиаторов (и чугунных, хотя они и неразборные). При использовании стальных радиаторов берется паспортная мощность всего устройства (примеры мы приводили выше).
Точный расчет отопительных приборов
Тепловые потери здания
Наиболее точная формула необходимой тепловой мощности выглядит следующим образом:
Q = S * 100 * (K1 * K2 * … * Kn- 1 * Кн), где
К1, К2… Кн — коэффициенты, зависящие от различных условий.
Какие условия влияют на микроклимат в помещении? Для точного расчета учитывается до 10 показателей.
К1 — показатель, который зависит от количества наружных стен, чем больше поверхность соприкасается с внешней средой, тем больше потери тепловой энергии:
- с одной наружной стенкой показатель равен единице;
- при наличии двух наружных стен — 1,2;
- при наличии трех наружных стен — 1,3;
- если все четыре стены наружные (т.е. однокомнатное здание) — 1.4.
К2 — учитывает ориентацию здания: считается, что помещения хорошо прогреваются, если они расположены в южном и западном направлениях, здесь К2 = 1,0, и наоборот, недостаточно — при окнах лицом на север или восток — К2 = 1,1. С этим можно поспорить: в восточном направлении помещение утром все же прогревается, поэтому целесообразнее применять коэффициент 1,05.
Рассчитываем сколько должна прогреваться батарея
К3 показатель утепления наружных стен в зависимости от материала и степени теплоизоляции:
- для наружных стен в два кирпича, а так же при использовании утеплитель для неутепленных стен, показатель равен единице;
- для неутепленных стен — К3=1,27;
- при утеплении жилого помещения на основании теплотехнических расчетов по СНиП — К3=0,85.
К4 – коэффициент, учитывающий самые низкие температуры холодного времени года для конкретного региона:
- до 35°С К4 = 1,5;
- от 25°С до 35°С К4 = 1,3;
- до 20°С К4 = 1,1;
- до 15°С К4 = 0,9;
- до 10°С К4 = 0,7.
Расчет радиаторов отопления по площади
К5 — зависит от высоты помещения от пола до потолка. Стандартная высота h=2,7 м с показателем, равным единице. Если высота помещения отличается от нормативной, вводится поправочный коэффициент:
- 2,8-3,0 м — К5 = 1,05;
- 3,1-3,5 м — К5 = 1,1;
- 3,6-4,0 м — К5 = 1,15;
- более 4 м — К5 = 1,2.
К6 – показатель, учитывающий характер помещения, расположенного выше. Полы жилых домов всегда утеплены, помещения выше могут быть отапливаемые или холодные, и это неизбежно отразится на микроклимате расчетного помещения:
- для холодного чердака, а также если помещение не отапливается сверху, показатель будет равен единице;
- с утепленным чердаком или крышей — К6 = 0,9;
- если отапливаемое помещение расположено сверху — К6 = 0,8.
К7 – показатель, учитывающий тип оконных блоков. Существенное влияние на теплопотери оказывает конструкция окна. В этом случае значение коэффициента К7 определяется следующим образом:
- так как деревянные окна с двойным остеклением недостаточно защищают помещение, высший показатель К7 = 1,27; Стеклопакеты
- обладают отличными свойствами защиты от теплопотерь, при однокамерном стеклопакете из двух стекол К7 равен единице;
- стеклопакет усовершенствованный однокамерный с аргоновым наполнением или стеклопакет двойной, состоящий из трех стекол К7 = 0,85.
Однотрубная и двухтрубная система отопления
К8 — коэффициент, зависящий от площади остекления оконных проемов. Теплопотери зависят от количества и площади установленных окон. Отношение площади окон к площади помещения должно быть скорректировано таким образом, чтобы коэффициент имел наименьшие значения. В зависимости от соотношения площади окон к площади помещения определяется нужный показатель:
- менее 0,1 — К8 = 0,8;
- с 0,11 до 0,2 — К8 = 0,9;
- с 0,21 до 0,3 — К8 = 1,0;
- с 0,31 до 0,4 — К8 = 1,1;
- с 0,41 до 0,5 — К8 = 1,2.
Схемы подключения отопительных приборов
К9 — учитывает схему подключения приборов. Тепловыделение зависит от способа подключения горячей и холодной воды. Этот фактор необходимо учитывать при установке и определении необходимой площади отопительных приборов. С учетом схемы подключения:
- при диагональном расположении труб горячая вода подается сверху, обратка — снизу с другой стороны батареи, а показатель равен единице;
- при присоединении подачи и обратки с одной стороны и сверху и снизу одной секции К9 = 1,03;
- примыкание труб с двух сторон подразумевает как подачу, так и обратку снизу, при этом коэффициент К9 = 1,13;
- вариант диагонального подключения, когда подача снизу, обратка сверху К9= 1,25;
- вариант одностороннего подключения с нижней подачей, верхним возвратом и односторонним нижним подключением К9 = 1,28.
Потери на теплоотвод из-за установки экрана радиатора
К10 – коэффициент, зависящий от степени покрытия приборов декоративными панелями. Открытость устройств для свободного теплообмена с пространством помещения имеет немаловажное значение, так как создание искусственных преград снижает теплоотдачу батарей.
Существующие или искусственно созданные преграды могут значительно снизить КПД батареи из-за ухудшения теплообмена с помещением. В зависимости от этих условий коэффициент составляет:
- при открытии радиатора на стену со всех сторон 0,9;
- , если устройство закрыто агрегатом сверху;
- при закрытии радиаторов сверху ниши в стене 1.07;
- если устройство закрыто подоконником и декоративным элементом 1.12;
- когда радиаторы полностью закрыты декоративным кожухом 1.2.
Правила установки радиаторов отопления.
Кроме того, существуют специальные нормы размещения отопительных приборов, которые необходимо соблюдать. То есть батарея должна располагаться минимум на:
- 10 см от низа подоконника;
- 12 см от пола;
- 2 см от поверхности наружной стены.
Подставив все необходимые показатели, можно получить достаточно точное значение необходимой тепловой мощности помещения. Разделив полученные результаты на паспортные данные теплоотдачи одной секции выбранного прибора и округлив до целого числа, получаем количество искомых секций. Теперь вы можете, не опасаясь последствий, подобрать и установить необходимое оборудование с требуемой тепловой мощностью.
Установка батареи отопления в доме
Насколько большой банк батарей вам нужен для содержания дома? | Домашние руководства
Автор Джозеф Уэст Обновлено 15 декабря 2018 г.
Многие домашние энергетические системы сталкиваются с перспективой несовместимости с основным источником питания. Ветрогенераторы мало помогают в безветренные дни, а солнечные батареи бесполезны, когда их засыпает снегом. Даже дома, подключенные к электросетям, время от времени сталкиваются с перебоями в подаче электроэнергии. Вы можете создать резервную копию с помощью аккумуляторной батареи, которая может обеспечить электричеством ваш дом, когда первичные источники выходят из строя.
Киловатт-часы
Бытовое потребление электроэнергии измеряется в киловатт-часах. Киловатт-час соответствует количеству энергии, необходимой для питания устройства мощностью 1 киловатт в течение одного часа или устройства мощностью 100 Вт в течение 10 часов. В вашем ежемесячном счете за электроэнергию указано, сколько киловатт-часов вы потребили, и ваш счет также может отображать статистику использования за предыдущие месяцы. По данным Управления энергетической информации США, средний американский дом потребляет 901 киловатт-час в месяц или примерно 30 киловатт-часов в день.
Количество дней
Нецелесообразно строить аккумуляторную батарею, способную обеспечивать потребности дома в электричестве в течение многих дней. Реалистичная система будет обеспечивать дом электроэнергией в течение нескольких дней, чтобы компенсировать любые сбои в первичной энергосистеме. При проектировании банка батарей вы должны определить, сколько дней вы ожидаете без электричества. Например, если вы живете в сельской местности, где сильные бури иногда вызывают перебои в подаче электроэнергии, вы можете рассчитывать свою систему на три дня работы от батареи.
Характеристики аккумуляторов
Аккумуляторы рассчитаны на выработку определенного напряжения и рассчитаны на определенное количество ампер-часов. Например, батарея на 400 ампер-часов может обеспечивать ток силой 4 ампера в течение 100 часов. Напряжение батареи считается довольно постоянным, хотя оно постепенно снижается по мере разрядки батареи. Чтобы оценить энергоемкость батареи в киловатт-часах, умножьте типичное рабочее напряжение на номинальное значение в ампер-часах, а затем разделите на 1000. Аккумулятор емкостью 400 ампер-часов, вырабатывающий 6 вольт, может обеспечить примерно 2,4 киловатт-часа.
Количество батарей
Блок батарей, предназначенный для питания средней американской семьи в течение трех дней, должен обеспечивать 90 киловатт-часов энергии.
9017