- Наружное утепление стен
- Фасадные работы
- Ремонт рустов
- Ремонт температурных швов
- Кровельные работы
- Ремонт дымоходов
- Промышленный альпинизм
- Ремонт входных групп
- Капитальный и косметический ремонт подъездов
- Ремонт ГВС ХВС
- Площадки для ТБО
- Металлоконструкции
- Уборка снега
- Полезная информация
- Благотворительность
- Отзывы
Смесительная установка системы водяного отопления. Насос смесительный
Установка циркуляционного насоса
Смесительная установка водяного отопления
При проектировании теплоснабжения зданий часто необходима установка теплового узла со смесительной установкой для снижения температуры воды поступающей из тепловой сети. Смесительная установка используется для качественного регулирования системы отопления, дополнения центральное регулирование.
При местном регулировании, автоматическое изменение температуры воды по заданному температурному графику в обогреваемом здании поддерживается оптимальная температура. Исключается перегрев помещений в осенний и весенний периоды отопительного сезона. Как следствие уменьшается расход тепловой энергии.
Под давлением в наружном теплопроводе, созданным сетевым циркуляционным насосом на ТЭЦ, высокотемпературная вода подается в точку смешения. При известной тепловой мощности системы отопления Qc количество высокотемпературной воды G1 будет тем меньше, чем выше температура t1.
G1 = Qc/(c(t1-t0))
где t1 - температура воды в наружном подающем теплопроводе, °С.
Поток обратной охлажденной воды из системы отопления, делится на два: первый G0 направляется к точке смешения, второй в g0 в обратный теплопровод тепловой сети. Соотношение масс двух потоков воды: охлажденной G0 и высокотемпературной g1 называют коэффициентом смешения.
u=G0/G1
Через температуру воды можно выразить коэффициент смешения:
u=G0/G1=(Gc-G1)/G1=(Gc/G1)-1=((t1-t0)/(tг)-t0))-1=(t1-tг)/(tг-t0).
Например, при температуре воды t1 = 150°С, tг = 95°С и t0 =70°С коэффициент смешения смесительной установки u = (150-95)/(95-70) = 2,2.
Это означает, что на каждую единицу объёма высокотемпературной воды должно подмешиваться 2,2 единицы охлажденной воды.
Смешение происходит в результате совместного действия циркуляционного сетевого насоса на тепловой станции и смесительной установки (насоса или водоструйного элеватора).
Куда устанавливать смесительный насос?
Смесительный насос можно включать в систему отопления тремя способами:
- в перемычку между обратной и подающей магистралями (а)
- в обратную (б)
- подающую магистраль (в)
Схемы смесительной установки с насосом
1А. Насос на перемычке между магистралями
1Б. Насос на обратной магистрали
2В. Насос на подающей магистрали
Условные обозначение:
1 - насос; 2 - регулятор температуры; 3 - регулятор расхода воды в системе отопления;
Смесительный насос, остановленный в перемычку, подает воду в точку А, увеличиваяя ее давление до давления высокотемпературной воды. Таким образом, в точку смешения А поступают 2 потока воды в результате действия двух насосов: сетевого (на теплоисточнике) и местного (смесительного), включенных параллельно. Насос на перемычке работает в благоприятных температурных условиях (при температуре t0о c),
GH=G0, где G0 = Gc - G1.
Насос на перемычке
Насос на перемычке не влияет на величину циркуляционного давления для местной системы отопления, которая определяется разностью давления в точках присоединения системы к наружным теплопроводам. Эпюра изменения давления в системе и в перемычке Б-А между магистралями изображена на рис. 1А.
Показано постепенное (условно равномерное) снижение давления в подающей (линия Т1) и обратной (линия Т2) магистралях, падение давления в системе отопления (сплошная вертикальная линия) и eгo возрастание под действием насоса в перемычке (пунктир) до давления в точке смешения (А).
Смесительный насос включают непосредственно в магистрали системы отопления, когда разность давления в наружных теплопроводах недостаточна для обеспечения расчетного расхода воды в системе. Насос при этом, обеспечивая помимо смешения необходимую циркуляцию воды, становится циркуляционно-смесительным.
Насос на обратной или подающей магистрали
Насос на обратной или подающей магистрали (б, в) перекачивает весь объём воды, циркулирующий в системе при температуре t0 или tг. Включение насоса в общую магистраль позволяет увеличить циркуляционное давление до необходимой величины независимо от разности давления в наружных теплопроводах. Условия смешения воды аналогичны: в точку А поступают два потока воды (G1 и G0) также в результате действия двух насосов сетевого и местного, но насосы включаются последовательно (по направлению движения воды).
Изменение циркуляционного давления при действии системы отопления с циркуляционно-смесительным насосом, включенным в общую обратную магистраль (рис. 2б). Как видно, давление в системе ниже давления в наружных теплопроводах. Данная схема может быть выбрана после проверки, не вызовет ли понижение давления вскипания воды или подсоса воздуха в некоторых местах системы . Насос повышает давление воды до давления в наружном обратном теплопроводе. Давление в точке смешения А должно быть ниже давления в точке Б (устанавливается с помощью регулятора температуры).
Изменение давления в теплопроводах смесительной установки с насосом
2А. Hасос на перемычке между магистралями
2Б. Насос на обратной магистрали
2В. Насос на по дающей магистрали
Условные обозначение:
1 - насос; 2 и 3 - давление в наружных, соответственно, подающем и обратном теплопроводах; А и Б - точки, соответственно, смешения и деления потоков воды;
Насос, включаемый в общую подающую магистраль, предназначен не только для смешения и циркуляции, но и для подъема воды в верхнюю часть системы отопления высокого здания. Смесительный насос в этом случае становится еще и циркуляционно-повысительным. Изменение гидравлическоrо давления в этом случае изображено на рис. 2В
Смесительных насосов, как и циркуляционных, устанавливают обычно два с параллельным включением в теплопровод. Действует всегда один из насосов, второй резервный.
Смешение воды может осуществляться и без местного насоса. В этом случае смесительная установка оборудуется водоструйным элеватором.
Источник: Отопление - Сканави А.Н., Махов Л.М.
rudic.ru
Насосно-смесительный узел для отопления: назначение
СодержаниеПри наступлении холодов значительно увеличивается оплата за тепло. С постоянным ростом тарифов эта плата становится не всем по карману. Утепленный фасад дома не всегда есть полноценным выходом. Для правильного и точного регулирования температуры теплоносителя разработано специальное устройство, которое хорошо себя зарекомендовало в этой сфере.
Насосно-смесительный узел не только увеличивает эффективность всей системы отопления, но и позволяет держать точно заданную температуру носителя тепла.
Предназначение устройства
Рынок насосно-смесительного оборудования и вспомогательных блоков к нему достаточно насыщен. Наиболее хорошо зарекомендовали себя узлы производства компаний Valtec, Tim и Rehau. Не зависимо от конструкционных особенностей, производителя и дополнительных функций устройства подготавливают теплоноситель, циркулируемый в контуре отопления, до заданного пользователем значения. В основном, значения, в зависимости от условий внешней среды задаются от 20 до 60 градусов.
Многокольцевой насосно-смесительный узел
К безусловному назначению также принадлежат:
- поддержка точно заданного значения температуры во вторичном контуре циркуляции;
- непрерывная циркуляция теплоносителя в первичном и вторичном контурах;
- согласованность циркуляции между контурами системы отопления;
- отслеживание расхода теплоносителя вторичного контура.
Конструкционно насосно-смесительные узлы представляют собой трубопроводные цепи, завязанные между собой и объединяющие первичный и вторичный контуры. В результате смешивания теплоносителя из двух потоков и возможно поддержание установленного температурного значения.к меню ↑
Сфера использования
Чаще всего, узлы насосно-смесительные применяют для налаженной работы систем отопления пола, обогревают тепличные хозяйства и другие объекты с водяным обогревом.
Актуально применение устройства на объектах с повышенными требованиями к точности температурной уставки и с критичными изменениями температурных режимов.
Расположить узел достаточно просто в любом ограниченном пространстве, так как он имеет небольшие габариты. Для этой цели зачастую оборудуют специальный – коллекторный шкаф, пряча торчащие вентильные соединения и иные приборы.
Чтоб организовать обогрев пола санузла, комнаты и других помещений дома насосный узел комбинируют с дополнительным блоком – коллектором. Коллекторный блок выступает распределителем контурных потоков теплого пола, как гидрострелка.
Брендовые смесительные узлы компании-производители делают совместимыми только со своими коллекторами, которые снабжают всеми необходимыми подсоединительными элементами. К примеру, коллектора Rehau HKV-D и Rehau HKV без проблем соединяются с насосно-смесительным узлом PMG 25 от той же Rehau, а компании Tim и Valtec имеют свои аналоги.
Для нормальной работы смесительный узел не требует применение электронных схем управления, а электрифицировать нужно лишь циркуляционный насос. Такое исполнение делает устройство практически независимым от перебоев снабжения электроэнергией и снижает вероятность аварийной остановки.к меню ↑
Что такое коллектор?
Для упрощения организации напольного отопления в быту применяют особое устройство под названием коллектор. Данное устройство является объединителем всех линейных отводов обогрева, включая подачу и возврат. Работа в тандеме со смесительным узлом обеспечивает комфортную температуру в помещении. Использование теплоносителя с первичного контура напрямую невозможно по причине очень высокого температурного режима, требующего внесения корректив.
Однокольцевой насосно-смесительный узел
Важно понимать, что каждый бренд имеет свои особенности в организации узлового блока, но вся сборка, не важно Rehau или Tim, проделывает одну и ту же работу – обеспечивает подачу теплоносителя заданной температуры во все питающие отводы.
Коллекторный узел – это параллельно расположенные две трубы горизонтальной направленности с подключением к подаче и возврату теплоносителя. Вся деталировка и другие конструкционные элементы в основной массе изготовлены из:
- сплавов слабо поддающихся коррозийным процессам;
- никеля;
- латуни;
- особой пластмассы.
Для контролирования температуры носителя и уровня протока подающее ответвление могут комплектовать термостатическим клапаном, а обратное – сенсорным датчиком протока.
Подающие клапаны могут снабжать ручным регулированием протока носителя. Закручивая такой регулятор, оператор может перекрыть подачу тепла на ответвление в ручном режиме. Визуализацию контроля протока для выполнения действий по гидробалансировке системы позволяют осуществить проточные сенсоры.
Более дешевые варианты коллекторных блоков не имеют дополнительных датчиков и индивидуализированных регулировочных возможностей.
Температурные и режимы давления наблюдают по средству установленных термометра и манометра. Спуск накапливаемого воздуха в системе обеспечивают отдельным вентилем.
Дополнительные конструктивные элементы, датчики и опции могут поставляться под заказ или на усмотрение производителя. Бренд Рехау имеет практику комплектовать узел в сборе. На примере насосно-смесительного узла PMG-25 стандартной сборки в комплекте поставляют:
- смесительный 3-х ходовой вентиль с трех позиционным сервоприводом переменного тока на 230В модели kvs=8,0м3/ч с Dy=25;
- термометры на подаче и возврате теплоносителя;
- насос энергощадящий до 45Вт с возможностью регуляции напора до 6 м.
Собранные и смонтированные части с применением уплотнений уже прошли гидроиспытания давлением.к меню ↑
Особенности работы коллекторно-смесительного тандема
Пара насосно-смесительный узел и коллектор работают по следующему принципу. Циркуляционный насос блока проталкивает теплоноситель по всем ответвлениям коллектора. С падением температурных показателей ниже установленного оператором температурного предела трех- (иногда двух-) ходовой клапан, постепенно приоткрываясь, делает вливание горячего теплоносителя в линию. Образовавшийся лишний объем теплоносителя перетекает с обратной линии в первичный контур общетепловой системы. Расход по малых контурах регулируется автоматически или с помощью ручного режима.
Структура комбинированного смесительного узла
Все системные сбои и неисправности, такие как повышенное давление, отсекают предохранительные клапаны или байпасы. Также не исключены другие предохранительные меры, которые применяют до полного восстановления гидравлической сбалансированности системы, чтобы сберечь исправность насоса и общую работоспособность.к меню ↑
Отличительные особенности насосно-смесительных узлов
До широкого применения в быту автоматического смешивания потоков первичного и вторичных контуров с помощью трех- и двухходовых клапанов в пользовании находилось устройство, так званная, гидрострелка.
В насосно-смесительном блоке разделение теплоносителя на потоки осуществляется принудительно, непрерывность потока разделяется только за счет движения воды. А гидрострелка имеет область со свободной зоной смешивания води, и подача теплоносителя осуществляется с помощью размещенного на каждом ответвлении своего насоса.
Насосно-смесительный узел располагает мгновенным смешиванием двух потоков контуров, а гидрострелка смешивает потоки по средству природного физического процесса.
Сравнить по скорости регулирования температуры двумя устройствами можно на примере накопительного и проточного бойлеров. Но в этом случае проточный способ будет еще и много экономней накопительного.к меню ↑
Рекомендации при установке
Монтаж устройств следует осуществлять строго соответствуя инструкциям компаний-производителей.
Вход и выход из первичного отопительного контура необходимо смонтировать со смесительным узлом или через тепловой коллектор.
Стандартно соединительный размер с первичными выводами составляет 1 дюйм, а вторичные отводы и коллектор обвязывают комплектно поставляемыми соединителями. Размер последних может варьироваться в зависимости от брендовой модели. Уплотнители на резьбовых частях соединителей гарантируют надежность и быстроту монтажа без дополнительных средств (герметиков, фум-ленты, пакли и т.д.).
Термическую головку следует установить вручную с максимальными значениями настроек.
Насос для циркуляции теплоносителя устанавливают между двумя вентилями с предварительным уплотнением.
Общая схема монтажа насосно-смесительного узла
С окончанием монтажа и статических проверок соединений наступает время испытаний системы отопления в сборе. До подачи питания на электронасос следует убедится в открытии все запорных элементов на пути движения носителя, чтобы избежать перегрузок и аварийных ситуаций, связанных с этим.
До появления насосно-смесительного узла монтаж, расчеты и настройка работы отопления занимала уйму времени, и была очень сложной инженерной задачей. Блок смесительный — готовое решение задач организации контурированной системы обогрева. Доукомплектовав узел, пользователь избежит допущенных ранее ошибок конструкции системы. А относительно несложная настройка исключает необходимость специальных регулировочных приспособлений.
Подробная инструкция поможет сэкономить пользователю оплату работ монтажной организации или осуществить грамотный контроль для принятия работ по монтажу.к меню ↑
Насосно-смесительный узел для теплого пола (видео)
Главная страница » Насосыbyreniepro.ru
Смесительный насос - Большая Энциклопедия Нефти и Газа, статья, страница 1
Смесительный насос
Cтраница 1
Смесительный насос, включенный в перемычку, подает в точку смешения А воду, повышая ее Давление до давления высокотемпературной воды. Таким образом, в точку смешения поступают два потока воды в результате действия двух различных насосов - сетевого и местного, включенных параллельно. [1]
Смесительный насос можно применять в системе отопления со значительным гидравлическим сопротивлением, тогда как при использовании элеваторной смесительной установки гидравлическое сопротивление системы должно быть сравнительно небольшим. [2]
Смесительный насос, включенный в перемычку, подает в точку смешения А воду, повышая ее давление до давления высокотемпературной воды. Таким образом, в точку смешения поступают два потока воды в результате действия двух различных насосов - сетевого и местного, включенных параллельно. [3]
Смесительный насос подает готовую бумажную массу через сортировки 25 и вихревые очистители 26 в напорный ящик бумагоделательной машины. [5]
Смесительные насосы подбирают по заводским характеристикам. [6]
Смесительный насос устанавливают на первом этаже с таким расчетом, чтобы вода из сборника оборотной воды поступала во всасывающий трубопровод насоса самотеком под постоянным напором. В этот же трубопровод поступает масса из бака постоянного уровня. Количество поступающей массы регулируется задвижкой. [8]
Смесительные насосы ( см. рис. 10.4) устанавливают по тем же схемам и правилам, что и циркуляционные. [10]
Смесительный насос, включенный в перемычку, подает в точку смешения А воду, повышая ее давление до давления высокотемпературной воды. Таким образом, в точку смешения поступают два потока воды в результате действия двух различных насосов - сетевого и местного, включенных параллельно. [11]
Смесительный насос включают непосредственно в магистрали системы отопления, когда разность давления в наружных теплопроводах недостаточна для нормальной циркуляции воды в системе. Насос при этом, обеспечивая помимо смешения необходимую циркуляцию воды, становится циркуляционно-смесительным. [12]
Смесительный насос - центробежный насос, изготовлен из титана, скорость вращения колеса 1500 об / мин. Раствор поступает в насос через всасывающий патрубок, в центре которого установлен второй, меньшего диаметра патрубок для хлористого аллила. При вращении рабочего колеса происходит интенсивное смешение: хлористый аллил разбивается на мельчайшие капли и образуется эмульсия, в результате обеспечивается большая поверхность контакта реагирующих компонентов. Время пребывания реакционной смеси в насосе невелико, и оно недостаточно для полной конверсии компонентов, поэтому смесь проходит последовательно два смесительных насоса. [13]
Смесительных насосов, как и циркуляционных, устанавливают два с параллельным включением в теплопровод ( см. рис. VI. [15]
Страницы: 1 2 3 4 5
www.ngpedia.ru
Смесительная установка системы водяного отопления
Смесительную установку ( 18.1)(смесительный насос или водоструйный элеватор) применяют в системе отопления для понижения температуры воды, поступающей из наружного подающего теплопровода, до температуры, допустимой в системе tг. Понижение температуры происходит при смешении высокотемпературной воды t1, с обратной (охлажденной до температуры to) водой местной системы отопления.
Смесительную установку (18.1) используют также для местного качественного регулирования теплопередачи отопительных приборов системы, дополняющего центральное регулирование на тепловой станции. При местном регулировании путем автоматического изменения по заданному температурному графику температуры (18.2) смешанной воды в обогреваемых помещениях поддерживаются оптимальные тепловые условия. Кроме того, исключается перегревание помещений, особенно в осенний и весенний периоды отопительного сезона. При этом сокращается расход тепловой энергии.
18.2 Смесительная установка с насосами
Высокотемпературная вода подается в точку смешения под давлением в наружном теплопроводе, созданным сетевым циркуляционным насосом на тепловой станции. Количество высокотемпературной воды G1 при известной тепловой мощности системы отопления Qc будет тем меньше, чем выше температура t1
(18 .1)
где t1 — температура воды в наружном подающем теплопроводе, °С.
Поток охлажденной воды, возвращающейся из местной системы отопления, делится на два: первый в количестве Go направляется к точке смешения, второй в количестве G1 — в наружный обратный теплопровод. Соотношение масс двух смешиваемых потоков воды — охлажденной Go и высокотемпературной Gi называют коэффициентом смешения
u=Go/G1 (18.2)
Коэффициент смешения может быть выражен через температуру воды
(18.3)
Рис. 18.1 Принципиальные схемы смесительной установки с насосом на перемычке между магистралями систем отопления (а), на обратной магистрали (б), на подающей магистрали (в)
1 – смесительный насос; 2 – регулятор температуры; 3 – регулятор расхода воды в системе отопления.
1 — смесительный насос; 2 и 3— давление в наружных соответственно подающем и обратном теплопроводах; А—точка смешения; Б — точка деления потоков воды
Например, при температуре воды t1=150°, tг==95° и tо=70 °С коэффициент смешения смесительной установки u=(150—95) : (95—70)=2,2. Это означает, что на каждую единицу массы высокотемпературной воды должно подмешиваться 2,2 единицы охлажденной воды.
Смешение происходит в результате совместного действия двух аппаратов — циркуляционного сетевого насоса на тепловой станции и смесительной установки (насоса или водоструйного элеватора) в отапливаемом здании.
Смесительный насос (18.3) можно включать в перемычку Б—А между обратной и подающей магистралями (рис.18.1a) и в обратную (рис.18.1б) или подающую магистраль (рис.18.1в) системы отопления. На рисунке показаны регуляторы температуры 2 и расхода воды 3 для местного качественно-количественного регулирования системы отопления в течение отопительного сезона.
Смесительный насос (18.3), включенный в перемычку, подает в точку смешения А воду, повышая ее давление до давления высокотемпературной воды. Таким образом, в точку смешения поступают два потока воды в результате действия двух различных насосов — сетевого и местного, включенных параллельно. Насос на перемычке действует в благоприятных температурных условиях (при температуре to<70 °С) и перемещает меньшее количество воды, чем насос на обратной или подающей магистрали (Go<Gc),
Gн=Go, где Go=Gс-G1 (18.4)
Насос на перемычке, обеспечивая смешение, не влияет на величину циркуляционного давления (18.5) для местной системы отопления, которая определяется разностью давления в наружных теплопроводах.
НАПОМИНАЕМ | В данном случае имеет место параллельная работа двух насосов. |
Изменение циркуляционного давления (18.50 в системе и в перемычке Б—А между магистралями в этом случае схематично изображено на рис.18.2а. Показано постепенное (условно равномерное) понижение давления в направлении движения воды в подающей (наклонная линия Г1) и обратной (наклонная линия Т2) магистралях, падение давления в стояке (вертикальная сплошная линия) и возрастание под действием насоса в перемычке (пунктирная линия) до давления в точке А.
Смесительный насос (18.3) включают непосредственно в магистрали системы отопления, когда разность давления в наружных теплопроводах недостаточна для нормальной циркуляции воды в системе. Насос при этом, обеспечивая помимо смешения необходимую циркуляцию воды, становится циркуляционно-смесительным.
Насос на обратной или подающей магистрали (см. рис.18.1б, в) перемещает всю воду, циркулирующую в системе [Gн=Gс по выражению (18.1)], при температуре to или tг. Включение насоса в общую магистраль системы отопления позволяет увеличить циркуляционное давление в ней до необходимой величины независимо от разности давления в наружных теплопроводах. Условия смешения воды аналогичны: в точку А (см. рис.18.1) поступают два потока воды (G1 и Go) также в результате действия двух насосов — сетевого и местного — с той лишь разницей, что насосы включаются последовательно (по направлению движения воды).
Рис.18.3 Принципиальная схема водоструйного элеватора (18.4)
1 — сопло; 2 — камера всасывания; 3 — смесительный конус; 4 — горловина; 5 — диффузор
Изменение циркуляционного давления (18.5) при действии системы отопления с циркуляционно-смесительным насосом, включенным в общую обратную магистраль, показано на рис.18.1,б. Как видно, давление в системе ниже давления в наружных теплопроводах. Данная схема может быть выбрана после проверки, не вызовет ли понижение давления вскипания воды или подсоса воздуха в отдельных местах системы. Насос повышает давление воды до давления в наружном обратном теплопроводе. Давление в точке смешения А должно быть ниже давления в точке Б (устанавливается с помощью регулятора температуры — см. рис.18.1).
НАПОМИНАЕМ | В данном случае имеет место последовательная установка двух насосов. |
Насос, включаемый в общую подающую магистраль, предназначают не только для смешения и циркуляции, но и для подъема воды в верхнюю часть системы отопления высокого здания. Смесительный насос (18.3) становится также циркуляционно-повысительным. Изменение гидравлического давления в этом случае изображено на рис.18.2, в,
Смесительных насосов, как и циркуляционных, устанавливают два с параллельным включением в теплопровод действует всегда один из насосов при другом резервном.
18.3 Смесительная установка с элеватором (18.4)
Смешение воды может осуществляться и без местного насоса. В этом случае смесительная установка оборудуется водоструйным элеватором.
Водоструйный элеватор (18.4) получил распространение как дешевый, простой и надежный в эксплуатации аппарат. Он сконструирован так, что подсасывает охлажденную воду для смешения с высокотемпературной водой и передает часть давления, создаваемого сетевым насосом на тепловой станции, в систему отопления для обеспечения циркуляции воды,
Водоструйный элеватор (рис.18.3) состоит из конусообразного сопла, через которое со значительной скоростью протекает высокотемпературная вода при температуре t1 в количестве G1; камеры всасывания, куда поступает охлажденная вода при температуре tо в количестве Go; смесительного конуса и горловины, где происходят смешение и выравнивание скорости движения воды, и диффузора.
Вокруг струи воды, вытекающей из отверстия сопла с высокой скоростью, создается зона пониженного давления, благодаря чему охлажденная вода перемещается из обратной магистрали системы в камеру всасывания. В горловине струя смешанной воды двигается с меньшей, чем в отверстии сопла, но еще со значительной скоростью. В диффузоре при постепенном увеличении площади поперечного сечения по его длине гидродинамическое (скоростное) давление падает, а гидростатическое — нарастает. За счет разности гидростатического давления в конце диффузора и в камере всасывания элеватора создается циркуляционное давление (18.5), необходимое для циркуляции воды в системе отопления.
Одним из недостатков водоструйного элеватора (18.4) является низкий КПД. Достигая наивысшего значения (43%) при малом коэффициенте смешения и особой форме камеры всасывания (исследования проф. П. Н. Каменева), гидростатический КПД стандартного элеватора практически при высокотемпературной воде близок к 10%. Следовательно, в этом случае разность давления в наружных теплопроводах на вводе их в здание должна не менее чем в 10 раз превышать циркуляционное давление ∆Рн, необходимое для циркуляции в системе отопления. Это условие значительно ограничивает давление, передаваемое водоструйным элеватором в систему из наружной тепловой сети.
Другой недостаток элеватора — прекращение циркуляции воды в системе отопления при аварии в наружной тепловой сети, что ускоряет охлаждение отапливаемых помещений и замерзание воды в системе.
Еще один недостаток элеватора — постоянство коэффициента смешения, исключающее местное качественное регулирование (изменение температуры tг) системы отопления. Понятно, что при постоянном соотношении в элеваторе между Go и G1 температура tг, с которой вода поступает в местную систему отопления, определяется уровнем температуры t1, поддерживаемым на тепловой станции для всей системы теплоснабжения, и может не соответствовать теплопотребности конкретного здания. Для устранения этого недостатка применяют автоматическое регулирование площади отверстия сопла элеватора. Такие элеваторы, применяемые в настоящее время, позволяют в определенных пределах изменять коэффициент смешения для получения воды с температурой tг, необходимой для местной системы отопления, т. е. осуществлять требуемое качественно-количественное регулирование.
1 — механизм для перемещения регулирующей иглы; 2 — шток регулирующей иглы; 3 — сопло; 4 — регулирующая игла; 5 — камера всасывания; 6 — горловина; 7 — диффузор
Водоструйные элеваторы различаются по диаметру горловины dг (например, элеватор №1 имеет dг=15 мм, №2— 20мм и т. д.). Для использования одного и того же корпуса элеватора при различных давлении и расходе воды сопло (см. рис. 6.12) делают сменным.
Диаметр горловины водоструйного элеватора dг, см, вычисляют по формуле
(18.4)
где Gc — расход воды в системе отопления, т/ч, ; ∆Рн — насосное циркуляционное давление для системы, кПа.
Например, для подачи в систему отопления 16 т/ч воды при циркуляционном давлении 9 кПа потребуется элеватор с dг=l,55 (4: 1,73)=3,6 см.
(18.5)
При известном диаметре сопла dс, см, находят необходимую для действия элеватора разность давления в наружных теплопроводах при вводе их в здание ∆Рн, кПа:
∆Рн =6,3G21/d4c, (18.6)
где G1 — расход высокотемпературной воды, т/ч.
Из последней формулы видно, что вслед за изменением по какой-либо причине ∆Рн в наружных теплопроводах изменяется и расход G1, а также расход воды в системе Gc, связанный с расходом G1 через коэффициент смешения элеватора ;
Gc=(1+u)G1 (18.7)
Изменение давления и расхода в процессе эксплуатации, не предусмотренное расчетом, вызывает разрегулирование системы отопления, т. е. неравномерную теплоотдачу отдельных отопительных приборов. Для его устранения перед водоструйным элеватором (см. рис.18.1) устанавливают регулятор расхода.
При применении элеватора часто приходится определять располагаемую разность давления ∆Рн Для гидравлического расчета системы отопления, исходя из разности давления в наружных теплопроводах ∆Рт в месте присоединения ответвления к проектируемому зданию. Насосное циркуляционное давление ∆Рн, передаваемое элеватором в систему отопления, можно рассчитать в этом случае по формуле (при коэффициенте расхода сопла элеватора, равном 0,95)
(18.8)
где ∆Ротв — потери давления в ответвлении от точки присоединения к наружным теплопроводам до элеватора.
В настоящее время шире стали применять насосные смесительные установки, учитывая их преимущества перед элеваторами. Некоторое увеличение капитальных вложений и, эксплуатационных затрат, связанное с применением смесительных насосов, компенсируется улучшением теплового режима помещений и экономией тепловой энергии, расходуемой на отопление.
Смесительная установка для системы «Теплый пол.»
Необходимо сразу уточнить, что смесительный узел необходим только для водяной системы теплого пола, так как в ней течет тот же теплоноситель, что и в радиаторах отопления. Как правило, система отопления организована таким образом: один котел, нагревающий теплоноситель, контур высокотемпературных радиаторов и контур или несколько контуров водяного теплого пола.
Котел, естественно, нагревает воду до той температуры, которая требуется для высокотемпературных радиаторов. Чаще всего это 95 °С, но иногда используются радиаторы для температуры 85 – 75 °С. По санитарным нормам температура поверхности пола не должна превышать 31 °С, это связано со множеством причин, и в первую очередь с комфортным пребыванием на напольном покрытии, чтобы не было ни холодно, ни жарко. Учитывая толщину стяжки пола, в которой вмурованы трубы системы «теплый пол», а также толщину и тип напольного покрытия, температура теплоносителя в трубах теплого пола должна быть 35 – 55 °С и не выше. Логично предположить, что в контур отопления теплого пола нельзя направлять воду непосредственно из котла, так как ее температура слишком велика. Что же делать? Как понизить температуру теплоносителя?
Именно с целью понизить температуру теплоносителя на входе в контур теплого пола используется узел смешения для теплого пола. В нем смешивается горячий теплоноситель и более холодный теплоноситель обратки теплого пола. Как результат, средняя температура становится ниже, теплоноситель подается в контур. Все контуры отопления в доме работают корректно: в радиаторный контур подается горячая вода температурой 95 °С, а в контур теплого пола – с температурой 55 °С.
Если вас интересует вопрос, можно ли обойтись без смесительного узла и в каких ситуациях, то ответим – такое возможно. Если отопление во всем доме выполнено с помощью низкотемпературных контуров, а источник тепла подогревает теплоноситель только для системы отопления до заданной температуры, то смесительные узлы можно не использовать. Примером такой системы отопления может быть использование воздушного теплового насоса. Если же источник тепла нагревает воду не только для теплых полов, но и для душа, температура которого – 65 – 75 °С, то установка смесительного узла обязательна.
Как работает узел подмеса для теплого пола
Условно работу смесительного узла можно описать так: горячий теплоноситель доходит до коллектора теплого пола и упирается в предохранительный клапан с термостатом, если его температура выше требуемой, клапан срабатывает и открывает подачу холодной обратки, происходит подмес – смешивание горячего и холодного теплоносителя. Как только температура достигает требуемых значений, снова срабатывает клапан и перекрывает подачу горячего теплоносителя. Более детально работу узла мы рассмотрим ниже, так как она может быть организована двумя путями.
Коллекторный узел для теплого пола служит не только для регулировки температуры теплоносителя, но и для обеспечения его циркуляции в контуре. Поэтому коллекторный узел состоит из двух основных элементов:
Предохранительный клапан, о котором мы уже говорили. Он подпитывает контур отопления теплого пола горячим теплоносителем ровно настолько, насколько это необходимо, контролируя температуру на входе.
Циркуляционный насос, который обеспечивает движение воды в контуре теплого пола с заданной скоростью. Это гарантирует, что нагрев всей площади теплого пола будет равномерным.
Помимо основных элементов в смесительный узел могут входить: байпас, который защищает узел от перегрузок, дренажные и отсекающие клапаны и воздухоотводчики. Поэтому коллекторный смесительный узел может быть выполнен различными способами в зависимости от поставленных задач.
Смесительный узел устанавливается всегда до контура теплого пола, но само место его установки может быть различным. Например, его можно оборудовать непосредственно в помещении с теплым полом, в котельной на разделении коллекторов, идущих в высокотемпературный контур и низкотемпературный контур. Если же помещений с теплыми полами много, то смесительные узлы устанавливаются в каждом помещении отдельно или в ближайшем коллекторном шкафу.
Основное различие в работе смесительных узлов заключается в том, что в них можно использовать разные предохранительные клапаны. Самыми распространенными являются 3-х ходовые клапаны и 2-х ходовые клапаны.
Смесительный узел с двухходовым клапаном
Двухходовый клапан иногда еще называют питающим клапаном. На этом клапане установлена термостатическая головка с жидкостным датчиком, который постоянно контролирует температуру теплоносителя, поступающего в контур теплого пола. Головка открывает и закрывает клапан, и таким образом добавляет или отсекает подачу горячего теплоносителя, идущего от котла отопления.
Получается, что смешение теплоносителей происходит таким образом – теплоноситель из обратки подается постоянно, а горячий теплоноситель подается только, когда необходимо, т.е. его подача регулируется клапаном. В связи с этим теплый пол никогда не перегревается и срок его эксплуатации продлевается. Двухходовый клапан обладает малой пропускной способностью, благодаря чему регулирование температуры теплоносителя происходит плавно, без резких скачков.
Большинство специалистов по монтажу теплых полов предпочитают устанавливать в теплый пол водяной смесительный узел с двухходовым клапаном. Но существует ограничение – их нецелесообразно устанавливать, если отапливаемая площадь больше 200 м2.
Смесительный узел с трехходовым клапаном
Трехходовый клапан совмещает в себе функции питающего перепускного клапана и байпасного балансировочного крана. Основное его отличие в том, что он смешивает внутри себя горячий теплоноситель с холодной обраткой. Трехходовые клапаны довольно часто оснащаются сервоприводами, которые управляют термостатическими устройствами и погодозависимыми контролерами. Внутри такого клапана находится заслонка, которая располагается в зоне 90 ° между трубой подачи горячего теплоносителя от котла и трубой от обратки. Можно выставлять любое положение – срединное или с уклоном в одну из сторон в зависимости от необходимого соотношения смеси обратки и горячей воды.
Считается, что такой тип клапанов универсален и незаменим в системах отопления с погодозависимыми контролерами и просто в крупномасштабных системах с множеством контуров.
Также следует обозначить недостатки трехходовых клапанов. Во-первых, не исключается случай, когда по сигналу от термостата трехходовый клапан откроется и впустит горячий теплоноситель с температурой 95 °С в контур теплого пола. Резкие скачки температуры недопустимы в эксплуатации теплых полов, трубы могут лопнуть от избыточного давления. Во-вторых, по причине большой пропускной способности трехходовых клапанов даже минимальное смещение в регулировке клапана приведет к значительному изменению температуры в контуре.
Зачем используется погодозависимая арматура? Чтобы изменять мощность системы «теплый пол» в зависимости от погодных условий. Например, при резком снижении температуры за бортом помещение остывает быстрее, а значит, теплый пол не будет справляться с задачей отопления дома. Дабы повысить его эффективность, необходимо увеличить температуру теплоносителя и расход.
Конечно, можно использовать клапаны с ручным управлением и каждый раз при изменении температуры вручную подкручивать вентиль. Но установить оптимальный режим таким образом сложно. Поэтому используются клапаны с автоматическим управлением. Погодозависимый контроллер вычисляет необходимую температуру и управляет клапаном очень плавно. Весь спектр 90 ° разбит на 20 участков по 4,5 °. Контроллер проверяет температуру каждые 20 секунд, и если фактическая температура теплоносителя, подающегося в теплый пол, не соответствует расчетной, то контроллер поворачивает клапан на 4,5 ° в необходимую сторону.
Также контроллер позволяет экономить на энергоносителях. Если все жильцы дома отсутствуют, он снижает температуру дома и поддерживает ее в пределах заданного значения.
Схема смесительного узла теплого пола
Ниже представлены самые распространенные схемы смесительных узлов, но на самом деле их значительно больше. Смешение теплоносителей можно производить как до коллекторов, так и непосредственно на каждом отводе коллекторных групп. При этом каждую коллекторную группу необходимо будет оборудовать своими термостатами, расходомерами и клапанами.
Также схемы отличаются в зависимости от того, однотрубная система отопления или двухтрубная. Например, при однотрубной системе байпас всегда в открытом положении, чтобы часть горячего теплоносителя всегда могла следовать дальше по направлению к радиаторам (фото ниже).
В двухтрубной системе отопления байпас закрыт, так как в нем нет необходимости (фото ниже).
Обратите внимание, что коллекторную группу теплого пола не обязательно устанавливать до радиаторного контура. Если площадь дома не слишком большая и падение температуры теплоносителя не слишком велико, то коллектор со смесительным узлом можно устанавливать на обратке радиаторного контура.
Также неотъемлемой частью коллектора являются термостатические клапана и расходомеры. Последние обязательно должны присутствовать, из-за того, что в системе длина труб разная и если не поставить расходомер, то вода будет течь в трубах с меньшим гидравлическим сопротивлением, то есть в коротких. Регулятор расхода обеспечивает равномерную циркуляцию теплоносителя по всей системе. Термостатические регуляторы предназначены для изменения температуры отдельно в каждом контуре системы. При помощи термостатических головок теплый пол реагирует на изменения внешних условий и поддерживает заданную температуру.
Похожие статьи:
poznayka.org
Смесительный винтовой насос NEMO® B.Max®
1 РоторВ износостойких и коррозионностойких исполнениях.
2 СтаторЗавулканизированная труба с уплотняющими буртиками с обеих сторон и разнообразными эластомерами. Вход в статор выполнен как воронкообразное отверстие для улучшения подачи продукта в насосную камеру.
3 Смесительный и подающий шнекУсиленные и смещенные лопасти смесительного и подающего шнека обеспечивают максимальное перемешивание и гомогенизирование сред.
4 Уплотнение валаИспользование для вращающегося механизма надежного одинарного уплотнения с целью обеспечения самых высоких требований эксплуатационной безопасности.
5 Воронкообразный корпусПодающий патрубок с оптимальным положением обеспечивает максимальное смешивание субстратов. Конусообразная, съемная рабочая камера со смотровым или входным отверстием для простой очистки, технического обслуживания, а также дополнительной подачи продукта. Опционально входная воронка покрывается специальным покрытием для защиты от коррозии и абразивного воздействия.
6 Блочная конструкцияБлагодаря тому, что привод прифланцован непосредственно к цевочной шестерни насоса, обеспечиваются компактные размеры, малый общий вес, постоянная высота оси независимо от конструкции и размера привода, простота и удобство технического обслуживания, а также высокая экономичность.
Эксцентриковый шнековый насос NEMO® B.Max® доступен...
- в разных конструктивных размерах с производительностью до 75 м³/ч
- для разности давлений до 48 бар
- с подобранными размерами воронки
- из разных материалов: от стали, нихромовой стали до материалов с высокой стойкостью против кислот, таких как дуплекс, хастелой и титан
- с разными эластомерами для статора: от износоустойчивого натурального каучука, масло-, кислото- и щелочеустойчивых эластомеров до таких материалов, как Aflas и Viton
- с геометрией S для щадящей транспортировки и надежной работы с большим разнообразием механических уплотнений и сальников, а также специальных уплотнений
... и транспортирует
- субстраты, которые необходимо смешать с технической водой или жидким навозом непосредственно в насосной камере.
pumps.netzsch.ru
Смесительный насос 8ФС - Справочник химика 21
Для повышения эффективности поглощения применяют двух-или трехступенчатые противоточные схемы с интенсивным перемешиванием с помощью пропеллерных мешалок, насосов-смесителей или инжекторов. Лучшие результаты получены в реакторах интенсивного перемешивания с герметичным приводом. Каждая ступень поглощения состоит из смесительного насоса, отстойника и холодильника. [c.220]Для производства нефтяных сульфокислот в США применяются периодический и непрерывный способы обработки масел [65]. По периодическому способу переработка масел производится в мешалках, по непрерывному методу используются смесительные насосы и центробежные сепараторы с промежуточными отстойниками или без них. [c.429]
Перекачивающие и смесительные насос ные подстанции неавтоматизированные [c.498]
Сначала в отстойник заливают 25 л водно-спиртового раствора (10% объемн. метанола) и 150 0 комплекса. Пускают смесительный насос и сырьевым насосом начинают подачу обрабатываемого бензина, затем [c.353]
Тонкая эмульсия бензола в серной кислоте соединяется в смесительном насосе с пропан-нропеновой смесью и подается в реакционный сосуд, где происходит реакция между бензолом и пропеном. Смесь в реакционном сосуде непрерывно перемешивается циркуляционным насосом, причем небольшая часть алкилата и серной кислоты постоянно отбирается от циркулирующей реакционной сл1еси и подается в отстойник, где в виде нижнего слоя отделяется серная кислота, которая вновь возвращается на установку алкилирования. Часть серной кислоты из процесса выводится и заменяется свежей. [c.231]
J — паровой подогреватель г — дозер 3 — смесительный насос 4 — реакционный сосуд 5 — центрифуги в — резервуар с кислотой 7 — кислотный на- сос — сборник для кислого гудрона 9 — насос для кислого гудрона. [c.163]
Дистиллят забирается насосом из резервуара, проходит через паровой подогреватель 11-1 и поступает в дозатор С-1, где к нему насосом Н-2 подкачивается определенное количество кислоты из резервуара Д-1. Отсюда смесь поступает в смесительный насос Н-1, где происходит интенсивное перемешивание кислоты и масла. Полученная смесь идет в реакционный сосуд М-1, в котором ее выдерживают в течение времени, достаточного для реакции. [c.98]
В смесительном насосе (рис. 241), предназначенном для перекачки бумажной массы с водой, в отличие от показанного на рис. 240 торфонасоса применено трехлопастное рабочее колесо открытого типа. Волокна, попадающие в зазор между лопастями и неподвижным направляющим диском, перерезаются самими лопастями. Такая конструкция позволяет исключить подвижное щелевое гидравлическое уплотнение. [c.350]
Аппаратурное оформление процесса коагуляции зависит от свойств латекса и в первую очередь природы эмульгатора. Смешение латекса с коагулянтами производится либо в аппаратах каскада, либо в смесительных насосах. [c.334]Диизобутилев холодной сернокислотной полимеризации. Олефины Се, получаемые при сернокислотной полимеризации изобутилена, могут применяться для получения нонилового спирта. Фталевые эфиры этого спирта хотя и придают пластика-там из полихлорвинила низкую морозостойкость, но обеспечивают им высокие диэлектрические свойства. В качестве сырья для получения нонилового спирта используется фракция диизобутилена, выкипающая в пределах 95—115° С и получаемая при обработке 65%-ной серной кислотой сырой бутан-бутиленовой фракции нефтезаводских газов. При соответствующих температурах серная кислота абсорбирует практически исключительно изобутилен, не затрагивая к-бутиленов. Извлечение изобутилена может осу-ществляться двумя способами с использованием системы смесительный насос-отстойник или в реакторе с мешалкой, оборудованной электромагнитным приводом. [c.107]
I. 5 — смесительные насосы 2 — емкость 3 — холодильник 4 — реактор 5, 8 — отстойники [c.96]
Смесительный насос — центробежный насос, изготовлен из титана, скорость вращения колеса 1500 об/мин. Раствор поступает в насос через всасывающий патрубок, в центре которого установлен второй, меньшего диаметра патрубок для хлористого аллила. Сечения обоих патрубков рассчитаны на проход соответствующих объемов хлористого аллила и хлорноватистой кислоты в соотношении 1 3. При вращении рабочего колеса происходит интенсивное смешение хлористый аллил разбивается на мельчайшие капли и образуется эмульсия, в результате обеспечивается большая поверхность контакта реагирующих компонентов. Время пребывания реакционной смеси в насосе невелико, и оно недостаточно для полной конверсии компонентов, поэтому смесь проходит последовательно два смесительных насоса. [c.97]
При промышленном проведении алкилирования бензола пропиленом в присутствии серной кислоты в жидкой фазе ведут процесс следующим образом. В тонко распределенную эмульсию бензола в серной кислоте, полученную перекачиванием смесительным насосом через холодильник и реактор указанных компонентов, вводят пропан-пропиленовую фракцию (рис. 138). Небольшая часть эмульсии отводится из реактора в отстойник, где происходит расслаивание алкилата и серной кислоты. Алкилат в качестве верхнего слоя поступает на дальнейшую переработку, серная же кис- [c.644]
Как в отечественной, так и зарубежной практике разработана и нащла промышленное применение новая схема поглощения изобутилена серной кислотой, а именно в агрегатах, состоящих нз смесительных насосов илп инжекторов, отстойников и холодильников. [c.254]
Очистка масляных дистиллятов и парафинов в электрическом поле. В промышленной практике находит применение процесс кис-лотно-щелочной очистки ма1сля,ных ди1Стиллятов и парафинов с разделением фаз (В электрическом поле. На установке кислотнощелочной очистки (рис. 18) дистиллята трансформаторного масла сырье насосом 12 через холодильник 1 подается к смесительному насосу 13, куда поступает также 96—98 /о-ная серная кислота. Смесь направляется в реактор-мешалку 2, где выдерживается для завершения реакции 8—10 мин, а затем под напором около 0,3 МПа — в злектроразделиуель 3 для отделения кислого гудрона. Кислое масло сверху электроразделителя поступает в смеситель 4 сюда же подается раствор щелочи для нейтрализации продуктов [c.65]
Извлечение изобутилена из изобутан-из обутиленовых фракций 60%-ной серной кислотой проводится последовательно в фех поглотительных системах, состоящих каяедая из смесительного насоса, отстойника и холодильника (рис. 31). Поглощение изобутилена осуществляется по принципу противотока. [c.52]
Изобутан-изобутиленовая фракцш поступает на первую ступень поглощения,, а свежая 60%-ная серная кислота - на третью ступень поглощения. Фракция С4, содержа-щг1я изобутилен, поступает в смесительный насос 1], при помощи которого осуществляется циркуляция эмульсии серной кислоты в углеводородах через холодильник 3, и отстойник 2). Сюда же насосом 4 подается частично насыщенная кислота со второй ступе- [c.52]
Более целесообразно проводить разложение сульфатного мыла непрерывным методом (рис. 3.5). Вначале сульфатное мыло подготавливают к переработке. Для этого мыло подают в сборник 1, где промывают раствором гидросульфата натрия, подшелоченным белым шелоком до pH 9—10, или же непосредственно слабым белым шелоком для удаления остатков черного щелока. Затем мыло гомогенизируют прокачиванием при помощи циркуляционного шестеренчатого насоса 2 через гомогенизатор 3, снабженный распределительной насадкой и пароэжектором для подогрева мыла при необходимости добавляют горячую воду для улучшения текучести мыла. Далее мыло фильтруют через фильтр 4 для отделения механических примесей и насосом 5 подают на смешение с 30 %-ной серной кислотой. Интенсивное смешение происходит непрерывно в смесительном насосе 6. Разложение мыла завершается в проточном полочном реакторе 7, снабженном лопастной многоярусной мешалкой. Реакционная смесь поступает из реактора в дегазатор 8, откуда насосом 9 подается в центробежный сепаратор 10. В сепараторе осуществляется непрерывное разделение реакционной смеси на легкую фракцию — сырое талловое масло, среднюю — кислый раствор гидросульфата натрия с лигнином и тяжелую — гипс, волокно и механические примеси. Таким образом, талловое масло быстро выводится из зоны реакции. Раствор гидросульфата натрия с лигнином отбирают в емкость 11, откуда часть раствора циркулирует через дегазатор 8 для разбавления реакционной смеси перед сепарированием, а остальная часть идет в сборник мыла. Готовое талловое маслр поступает в бак 12. Позиция 13 — вентилятор. [c.81]
Нормальный бутан отводится из нижней части колонны, а изобутап отводится сверху и подается для рециркуляции на прием смесительного насоса. Нижний продукт дебутапизации, состоящий из дебутанизиро-ванного сырого алкилата, поступает в колонну для вторичной перегонки алкилата. В колонне отделяется фракция алкилата с концом кипения 149° в виде ректификата, которая затем смешивается с бензином прямой гонки. Эта смесь с добавкой ТЭС образует стооктановый авиабензин. Боковой погон колонны, состоящий из алкилата, кипящего в интервале температур 149—204°, может быть смешан с обычным моторным топливом. [c.311]
Плотнозацепляющиеся червяки работают по принципу объемных насосов и могут быть как противосторонне-, так и односто-ронневращающимися (см. рис. 4.М, а и б). Большой радиальный или боковой зазор усиливает течение в зоне щели между корнем червяка или в межгребневой полости, в результате чего агрегат работает как смесительный насос. Конструкция смесительного насоса без принудительной подачи показана на рис. 4.31, в. Расположение червяков рассчитано на самоочистку, т. е. гребень одного червяка, вращаясь, очищает выточку другого. В конструкции двухчервячных экструдеров принципиально выделяют системы с замкнутыми объемами (нагнетающие) — см. рис. 4.31, а и б — и с незамкнутыми объемами, отличающиеся от систем перемешивания, предусматривающих принудительное и обратное течение (см. рис. 4.31, в). [c.218]
Сточные воды полукоксования обесфеноливают на противоточной трехступенчатой установке, состоящей из смесительных насосов и сепараторов. Производительность установки по воде равна 30—40 ж /ч. Экстрагентом служит отечественный бутилацетат, содержащий 90—93% эфиров. Соотношение объемов растворителя и воды 1 7 температура воды около 30° С. [c.140]
В экстракторах этого типа имеется больше возможностей для варьирования механических устройств, чем в ранее рассмотренных. Поэтому число предложенных конструкций весьма велико и в данном обзоре нет возможности рассмотреть все разновидности смесительно-отстойных экстракторов (см. напримерз8.наиболее важные типы, и притом только экстракторы с механическим перемешиванием (включая наружные смесительные насосы). Описано же много специальных перемешивающих устройств, в том числе смесители инжекционного и струйного типов, а также специальные отстойные камеры . Хотя насосы могут быть применены для всех описываемых ниже экстракторов, в таблицу по выбору экстракторов включены только два известных аппарата такого типа. [c.43]
Насосно-отстойный экстрактор Кирстеда (тип Е3)3 . В этом экстракторе вместо внутренних мйпалок применяются наружные смесительные насосы. Поэтому сама колонна состоит из нескольких расположенных друг над другом отстойных секций. Из каждой секции тяжелая фаза отводится через кольцевой желоб, а легкая фаза—из-под конической перегородки (рис. 14,с). Если требуется, колонна может орошаться в качестве флегмы смешанными фазами, перекачиваемыми насосами через теплообменники для поддержания температурного градиента по высоте экстрактора. [c.44]
Хлорноватистая кислота из отделения ее получения поступает в смесительный насос 1 (рис. 23). Туда же поступает хлористый аллил из напорной емкости 2. В насосе 1 при интенсивном перемешивании проходит реакция образования дихлоргидрина. Полученный раствор подают в реактор 4 с мепталкой, где реакция заканчивается. Для лучшего перемешивания раствор из реактора поступает в другой смесительный насос 1, а оттуда в холодильник 3 для снятия тепла реакции и снова возвращается в реактор. Эти два аппарата и насос являются йепрерывно действующим циркуляционным контуром. Раствор из реактора 4 непрерывно по- [c.96]
Хлористый аллил с парами воды выводят с верха колонны, конденсируют и частично возвращают в колонну в виде флегмы. Остальной хлористый аллил сжигают ( легкие отходы) использовать его нецелесообразно, так как он содержит большое количество близкокипящих примесей. Смесь дихлоргидрина и трихлорпропана из средней части колонны поступает в смесительный насос 9, куда подают также раствор дихлоргидрина из отстойника 5. Во время смешения происходит экстрагирование хлористого аллила трихлорпропаном. После этого раствор поступает во второй отстойник 8, из которого раствор дихлоргидрина и органическую фазу отдельными насосами подают в аппараты дегидрохлориро-ваийя. [c.96]
Производительность отделения получения дихлоргидрина и отделения получения хлорноватистой кислоты должна быть всегда одинаковой, чтобы раствор кислоты в емкости отделения получения Н0С1 не накапливался или чтобы емкость не опустошалась. Поэтому оба отделения связаны автоматической системой регулирования производительности. Регулятор уровня (РУКЦ), установленный на емкости с кислотой, связан с регулирующим клапаном на обводной линии, шунтирующей смесительный насос. Прн повышении или снижении уровня жидкости в емкости клапан со-отвегственно уменьшает или увеличивает поток жидкости, проходящей по обводной линии с нагнетательного на всасывающий патрубок насоса. Таким образом регулируют скорость поступления реакционного раствора в реактор. [c.97]
Повторное смешение проводят в смесительном насосе. Смесь трихлорпропана и дихлоргидрина эмульгируется в растворе дихлоргидрина при этом часть хлористого аллила, растворенного в растворе дихлоргидрина, экстрагируется трихлорпропаном и вместе с ним отстаивается в виде органической фазы во втором отстойнике. Органическую фазу после повторного отстаивания частично возвращают в колонну, остальное количество направляют В аппарат дегидрохлорирования дихлоргидрина. [c.100]
Включают смесительный насос и регулируют подачу обоих компонентов. Как только реактор заполнится, включают циркуляционный насос и регулируют подачу воды в холодильник, достигая регламентированной температуры раствора. После того как начнется переток раствора из реактора в отстойник, включают редоксметр и по его показаниям вручную корректируют подачу хлористого аллила. Когда концентрация хлорноватистой кислоты достигнет нормы, переходят на автоматическое регулирование отношения исходных веществ. [c.100]
Колонну разгонки органической фазы и систему повторного смешения раствора дихлоргидрина с трихлорпропаном включают в работу после накопления органической фазы в количестве, достаточном для заполнения системы. Поэтому в пусковой период в отделение дегидрохлорирования подают раствор дихлоргидрина без повторной обработки. Сначала колонну разогревают острым наром, затем вводят органическую фазу. По мере заполнения отстойника продуктом дают орошение (флегму) и выводят колонну на нормальный температурный режим. Когда накопится достаточное количество смеси трихлорпропана с дихлоргидрином, включают второй смесительный насос и смесь направляют в другой отстойник. [c.100]
Экстракция фенолов производится по методу феносоль-ван на противоточной трехступенчатой установке, состоящей из смесительных насосов и сепараторов. Производительность по воде равна 30—40 м час. Растворителем служит отечественный бутил ацетат с содержанием эфиров от 90 до 93%. Соотнощение растворителя к воде —1 7. Температура воды— около 30°. [c.58]
chem21.info
Портал о насосах. Насосно-смесительный узел: устройство, назначение, принцип работы
СодержаниеВ отопительный сезон много средств тратится на оплату услуг теплосети. Даже при утепленном и подготовленном к зиме жилище расходы являются колоссальными. При острой необходимости экономии теплоносителей, в свет выпущена новая разработка, которая повышает эффективность системы отопления, что существенно снижает расходы на приобретение теплоносителя.
Использование насосно-смесительного узла, как части центральной отопительной системы, поможет поддержать невероятно точно заданную температуру.
Назначение прибора
На общемировом рынке доступен выбор разных вариантов и комбинаций насосно-смесительных узлов. Одни из наиболее зарекомендованных, производства компаний Rehau, Tim, Valtec, а именно VT Combi. Все эти устройства, не зависимо от производителя, объединяет одно назначение – подготовка теплоносителя в контуре циркуляции до задаваемого настройками значения (обычно, в диапазоне от 200С до 600С). А также точная поддержка заданной температуры во вторичном контуре, непрерывная циркуляция теплоносителя, гидравлические согласованности между контурами, расход вторичного контура.
Многокольцевой насосно-смесительный узел
Насосно-смесительный узел – цепь трубопроводов, образующая смешивание двух потоков – подачи и обратного в общесистемный. Благодаря подмешиванию из обратного потока и поддерживается заданная температура вторичного контура.к меню ↑
Области применения
Смесительные узлы, в общей массе, используются для обслуживания систем водяного отопления пола, обогрева теплиц и открытых площадок.
Применение приспособления актуально для производств и малых хозяйств, где критична поддержка точных температурных режимов. Благодаря особенностям конструкции, прибору не нужны электронные схемы, а использование электричества необходимо лишь насосу. Этот факт позитивно влияет на отказоустойчивость и практическую независимость от перебоев с электропитанием, особенно в глубинках.
Устройство применяется в комбинации с коллектором, распределяющим потоки петель теплого пола. Коллектор не заменим при наличии водяного обогрева санузла, кухни, комнаты, а также общесистемного обогрева частного дома.
Например, стандартный смесительный насосный узел PMG 25 от компании Rehau можно применить для создания систем из теплых полов. Но он совместим только с коллекторами Rehau HKV и Rehau HKV-D. Аналогично насосно-смесительные узлы компаний Tim и Valtec совмещаются с коллекторами своих брэндов.
Габаритно узел смесительный небольшой и свободно располагается в объеме коллекторного шкафа.к меню ↑
Суть и устройство коллектора
Коллектор – специальное приспособление, без которого осуществить напольное водяное отопление очень сложно. К нему сходятся все подсоединяющие патрубки напольных контуров.
В теплоносителе, подающемся от котельной, температура очень высока и не подходит для нормальной работы теплых полов. Поэтому в паре с коллектором всегда работает насосно-смесительный узел, который делает температурную корректировку.
Каждый изготовитель смесителей вносит свои особенности в узел, но сборки и Rehau, Tim, и другие, выполняют одну и ту же задачу – подают теплоноситель определенной температуры во все водяные петли.
Однокольцевой насосно-смесительный узел
Для понимания работы узла следует подробнее разобрать его состав. По сути, это две расположенные горизонтально трубы, подключённые к подаче теплоносителя и к его обратной линии. Детали и составные части коллекторов делают из таких материалов как:
- антикоррозийного сплава или нержавеющей стали;
- латуни;
- никеля;
- специализированной пластмассы.
На подающей трубе располагают отводы с термостатическими клапанами, а на трубе обратной линии – ответвления с сенсорами протока. На клапанах подачи размещены колпачки для ручного регулирования протока. Закрутив регулятор, пользователь вручную перекрывает линию подачи на определенную петлю обогрева. Сенсоры протока обратной линии позволяют визуально наблюдать за объемом протекающей воды и выполнить гидравлическое балансирование системы.
Для удешевления коллекторного узла сенсоры протока могут не применять.
Контроль за температурными показателями и показателями давления осуществляют путем монтажа термометра и манометра. Для выпуска воздуха из узла устанавливают специальный кран.
Другие элементы системы могут поставляться на усмотрение поставщика. Например, компания Рехау практикует полную комплектацию узла в сборе. Так узел насосный смесительный PMG-25 состоит из:
- 3-ходового смесительного вентиля kvs=8,0 м3/ч Dy=25 с 3-позиционным сервоприводом 230В (переменного тока).
- Энергосберегающего насоса с регулированием напора от 1 до 6,2м, энергопотреблением от 1 до 45Вт.
- Термометров на обоих линиях – подачи и возврата теплоносителя.
А его отдельные детали сразу смонтированы с уплотнениями и прошли испытания давлением.к меню ↑
Принцип работы комбинированного смесительного узла
Работа насосно-смесительного узла с коллектором устроена так: теплоциркулирующая жидкость протекает по всем петлям обогрева с помощью насоса. Контурный контроль расхода регулируют автоматически или в ручном режиме. Если температура теплоносителя снижается до установленного значения и ниже, двух- или трехходовой клапан узла, плавно открываясь, подмешивает горячую воду системы. При этом теплоноситель обратной линии перетекает в первичный контур общей сети.
Структура комбинированного смесительного узла
Возникающие неисправности или резкое повышение давления отсекаются предохранительными клапанами, возможностями байпаса и другими методами до восстановления гидравлического баланса системы. Эти действия сохраняют работоспособность системы, расход теплоносителя и нормальную работу циркуляционного насоса.к меню ↑
Отличие насосно-смесительного узла от гидрострелки
До появления устройств автоматического смешивания потоков подачи и обратной линии теплоносителя в широком пользовании было устройство под названием – гидрострелка.
В смесительном насосном узле осуществляется разделение потоков принудительно, непрерывный поток носителя делится только за счет движения самой воды. А в гидрострелке создается область со свободным положением воды и разгоняется теплоноситель по средству насоса от одной зоны к другой.
В узле смесителя вода сразу смешивается с двух потоков в один, а в гидрострелке смешивание мгновенно не осуществимо.к меню ↑
Монтажные рекомендации
Все монтажные работы следует выполнять четко, следуя инструкциям производителей оборудования.
Выходы первичной отопительной петли следует соединить непосредственно с узлом смесительным или через отопительный коллектор.
Присоединение к первичной петле осуществляют с помощью резьбового соединения размером 1”, а ко вторичному контуру коллектор подсоединяют при помощи поставляемых комплектных соединителей. Сперва соединитель навинчивают на узловой патрубок, а затем вторую половину ниппеля крепят к коллектору. Соединители имеют на резьбовых частях резиновые уплотнители, поэтому дополнительные герметики не нужны.
Монтаж термической головки выполняют вручную с максимальными значениями настройки.
Установка циркуляционного насоса осуществима при закрытых подсоединительных шаровых кранах. Не следует забывать, что необходимо поместить резиновые прокладки между ними и насосом.
После окончания монтажных работ и проверки всех точек соединения следует произвести гидравлические испытания системы отопления.
Важно произвести испытания системы до заливки бетоном трубопровода теплого пола. Иначе при обнаружении неисправности необходимо будет произвести вскрытие стяжки для тщательной проверки патрубков и соединений.
Общая схема монтажа насосно-смесительного узла
Перед включением насоса нужно убедится в открытии всех запорных элементов на его пути для избегания перегрузок и выхода системы из строя.
Расчеты и отладка систем отопления есть очень сложной инженерной задачей. Но с появлением уже готового решения в виде насосно-смесительного узла данная задача становится гораздо проще. Такой узел – готовое решение контурного обогрева системы отопления. Добавив грамотную комплектацию к смесительному узлу, можно исключить ошибки конструирования всей системы. А относительная простота настроек позволяет исключить необходимость в помощи специализированных приспособлений.
Кажущаяся сложность сбора узла перекрывается подробной инструкцией в его комплекте. Больше сложности в окончательной настройке коллектора, подсоединенного к насосно-смесительному узлу.к меню ↑
Сборка насосно-смесительного узла для теплого пола (видео)
nasosovnet.ru
Адрес:
603034 Нижний НовгородЛенинский район ул. Ростовская
д.13 офис №2
Телефон:
(831) 216-17-138(987) 544-18-81
email:
[email protected]COPYRIGHT © 2022
Все права защищены