Как узнать где фаза а где ноль с индикаторной отвертки: Как определить фазу и ноль без приборов

Содержание

Инструкция, как определить фазу и ноль мультиметром или индикаторной отверткой

Монтаж электропроводки в квартире — это довольно сложная работа, поэтому многие обязательно прибегают в этом случае к помощи специалиста. Но иногда приходится решать некоторые задачи электропроводки, которые не требуют особых навыков и знаний. В этом случае нецелесообразно вызывать на помощь профессионала, так как минимум это немного стыдно, а также отвлечет мастера от других важных работ.

К таким бытовым задачам относится к примеру такая — определение в розетке фазы и ноля. Для квалифицированных специалистов это обычная работа, и решение проблемы они точно найдут за пару минут.

Но вот совсем другое дело для тех, кто никогда не работал с электричеством. В этой статье мы подробно вам расскажем способы определения фазы и ноля без приборов.

Краткое содержимое статьи:

Как обозначается проводка приходящая в квартиру?

В схемах обозначение стандартное и выглядит оно следующим образом:

  • PE — заземление
  • N — нулевой провод
  • L — фазовый провод

Стандартом также было введена цветовая расцветка проводом, и этих стандартов придерживаются во многих бытовых приборов, и это необходимо знать.

Желто-зеленый провод — заземление, синий провод — нулевой, красный или коричневый — фаза.

Не все знают чем отличается фаза от нуля, поэтому это может причинить серьезный вред здоровью. Этих правил придерживаются электрики при монтаже проводки, это не только удобство, но также это может спасти кому-то жизнь.

Очень мало розеток, на которых обозначается нулевой и фазовый контакт, поэтому нужно знать способы определения, об этом мы расскажем далее.

Индикаторная отвертка

Определить фазу и ноль индикаторной отверткой — это один из самых простых способ проверки.

Такая отвертка стоит совсем не дорого, ее можно найти как в хозяйственном, так и в строительном магазине. Чтобы обнаружить в розетке фазу следует прикоснуться подушечкой большого пальца к контакту с обратной стороны отвертки.

Затем следует вставить отвертку в отверстия розетки, если индикатор внутри загорелся, то это говорит о том, что мы обнаружили фазу. Если индикатор не загорается, то это значит мы наткнулись на нулевой провод.

В этих индикаторных отвертках в основном применяются неоновые лампочки и резистор. Также в продаже можно найти светодиодные, они могут работать без касания пальцев, так как там устанавливается батарейка.

Но мы не видим смысла переплачивать за такой вариант индикатора, и простой отвертки с неоновой лампочкой будет достаточно.

Инструкция как определить фазу и ноль используя мультиметр

Нужно установить переключать на измерение напряжения свыше 250 Вольт, если установить на меньшее значение, то нам не получится правильно определить фазу.

Далее следует зажать черный щуп между пальцев, а красным прикасаться поочередно к контактам розетки. Если вы заметите отклонение показаний, то значит вы сумели найти фазный контакт.

Заземление и ноль найти совсем не составит труда, также используем тот же прибор. Красный щуп уставите в фазовое отверстие розетки, а затем сначала черным щупом установите на другой контакт, и после этого на третий.

Обязательно запомните напряжение и в том, и в другом случае. Где напряжение будет меньше, там и есть заземление, а выше напряжение указывает на нулевой провод. Вот так можно определить фазу и ноль мультиметром.

Подручный метод определения фазы и ноля

Для осуществления данного варианта нам не понадобится абсолютно никакое дополнительной оборудование, только резистор 1 Мом и 1 клубень сырого картофеля.

У многих возможно сейчас появилось недоумение на лице, но этот способ неоднократно проверялся и он действительно работает.

Вам понадобится 2 провода длиной 1 метра, можно использовать медный 1-жильный провод для проводки.

Разрежьте картофелину пополам, один конец присоедините к водопроводной трубе, а другой воткните в картошку. Теперь возьмите другой провод и воткните в картофель на расстоянии 0.5 см от 2 провода. Другой его конец вставьте в розетку и следует подождать 2 минуты.

Фазный провод выдаст себя легко, крахмал на срезе начнет пениться. Такой способ довольно простой, поэтому его каждый сможет использовать в домашних условиях. Желаем вам успехов!

Фото инструкция, как определить фазу и ноль

Вам понравилась статья? Поделитесь 😉

 

Как определить фазу и ноль индикаторной отверткой

Содержание:

Для чего важно правильно идентифицировать фазный провод

При подключении домашней сети в первую очередь важно правильно вычислить фазный контакт. Такая необходимость возникает в следующих ситуациях:

  1. При подсоединении выключателей – данное коммутационное устройство должно разрывать фазный провод. Если его установить на нулевом проводнике, прибор будет выполнять свои функции. Но в этом случае при выключенном устройстве патрон лампы будет находиться под напряжением, что не безопасно при замене осветительного элемента.
  2. При монтаже автоматов – чаще всего в быту применяются одноконтактные автоматические выключатели, размыкающие только фазу. Ноль при этом остаётся постоянно замкнутым. Если автомат установлен на нулевой провод, сеть останется под напряжением после выключения устройства, в результате чего оно не будет выполнять предусмотренные функции.

Для исключения ошибок, потребителю важно правильно определить, какой из проводов является фазным.

Понятия «нуля» и «фазы»

Электрический ток — это упорядоченное движение отрицательно заряженных частиц.

Если электроны перемещаются только в одном направлении, такой ток называют постоянным, если в разных — переменным.

Проводники бывают трех видов:

  1. «Фаза» — рабочий контакт. На него подается напряжение.
  2. «Ноль» («нуль») — проводник, по которому ток протекает обратно к генератору, замыкая цепь.
  3. «Земля» — провод, соединяющий любую точку сети с заземляющим элементом. Он нужен для защиты от удара электрическим током.

Как отличить фазу от ноля

Узнать фазу и ноль при домашних работах можно многими способами:

  • Визуально по расцветке и маркировке проводов, в которых течет электрический ток.
  • Применяя различные приборы, такие как отвертки-индикаторы или тестер.
  • Применение контрольной работы.
  • Применение «народных» методов с помощью обычного картофеля.

Маркировка проводов

Как устроена индикаторная отвертка

Чтобы понимать как пользоваться индикаторной отверткой, надо хотя бы в общих чертах представлять себе ее устройство.

Самый простейший прибор состоит из таких компонентов:

  • Жало отвертки. Часть устройства, которым прикасаются к проводам или контактам, на которых надо проверить наличие напряжения.
  • Резистор. Это токопроводящая деталь, которая пропускает электрический ток, но понижает его значение. Сопротивление резистора подбираются для определенного напряжения, на которое рассчитана индикаторная отвертка. Если устройство рассчитано на индикацию напряжения в 220 вольт, то лезть с ним в высоковольтный трансформатор не стоит.
  • Индикатор. Электрический ток не виден глазу, поэтому о его наличии или отсутствии можно судить исключительно по косвенным признакам, одним из которых является свечение лампочки.
  • Пружина. Является проводником между индикаторной лампочкой и контактной пластиной. Одновременно зажимает лампочку внутри корпуса прибора.
  • Контактная пластина. Удерживает все детали внутри прибора, одновременно являясь контактом, после прикосновения к которому замыкается электрическая цепь, питающая индикаторную лампочку.
  • Изоляция. По жалу индикаторной отвертки течет ток напряжением 220 вольт, при наличии его в проверяемой сети. Чтобы не получить электротравму, корпус устройства и его жало почти на всю длину покрыты диэлектриком. Зачастую это прозрачный пластик желтоватого оттенка, сквозь который хорошо видно устройство индикаторной отвертки.

Обычная индикаторная отвертка это одноразовое устройство – если она сломается, то использованный прибор остается только выкинуть.

Разновидности отверток

На сегодняшний день в ассортименте любого строительного магазина представлены следующие разновидности индикаторных отверток:

  1. Многофункциональная отвертка Safeline.
  2. MS 18.
  3. Lek ОП 1.
  4. Lek ОП 2Э.
  5. ВМ 1141 220 250В.
  6. Индикаторная отвертка с батарейкой.

Представленные модификации устройства имеют некоторую разницу в функциональности.

Принцип работы простейшей, пассивной индикаторной отвертки

Чтобы убедиться в наличии или отсутствии напряжения в электрической сети надо наблюдать за лампочкой индикаторной отвертки, а её жалом прикасаться к токоведущим контактам розетки. При этом одним из пальцев руки надо касаться контактной пластины.

Чтобы лампочка засветилась, к одному из ее контактов должна быть подведена фраза, а к другому нуль. Если на контакте розетки есть фазное напряжение, то оно через резистор попадает на разъем лампочки. Тело человека исполняет роль нулевого провода, так как оно обладает достаточной электрической емкостью и сопротивлением. Когда на один конец лампы приходит фаза, а палец прикасается к контактной пластине, то цепь замыкается и лампа начинает светиться. Таким образом, прикасаясь жалом отвертки к контактам розетки можно находить фазу и нуль.

Минусом такого устройства являются наличие резистора, а слабым местом – индикаторная лампа. Первый не позволяет обнаружить наличие напряжения меньше чем 60 Вольт, а лампа может перегореть, если по каким-то причинам напряжение в сети будет больше номинального. Также вероятно пробивание фазы на землю – все включено, а розетки не работают (если заземление сделано правильно). Впрочем, такие случаи являются очень редким исключением из общего правила, и в основном индикаторная отвертка хорошо справляется со своей задачей.

Что может показывать индикаторная отвертка

Определение каких-либо неисправностей в электрической сети индикатором напряжения имеет смысл только в том случае, когда в квартире нет света, но электричество точно есть в других по подъезду. То же самое касается частных домов – первым делом надо узнать, есть ли свет у соседей.

Если проблема всё-таки в своей квартире, то чаще всего индикаторная отвертка показывает два диаметрально противоположных результата:

  • Фазы нет ни в одном из контактов розетки. Причин этому может быть очень много и большинство из них требуют вмешательства профессионалов. Своими силами можно только определить не перегорела ли пробка (чаще вместо нее установлен «автомат» – прибор автоматического отключения, при превышении номинальных значений силы тока в цепи). Для этого надо найти возле счетчика пробки и проверить тестером есть ли напряжение на контактах до и после нее. Если пробка перегорела, то ее надо менять, а если стоит автомат, то его могло выбить – на нем есть рычажок, который в рабочем положении повернут вверх (если устройство правильно установлено).
  • Фаза есть на всех контактах розеток. Практически со стопроцентной гарантией это значит что отгорел нулевой провод возле счетчика. Если нет навыка электромонтажных работ, то для решения проблемы надо приглашать электрика.

Опции отвертки

Стандартный прибор предназначен для следующих целей:

  1. Индикаторная отвертка показывает фазу или ноль.
  2. Определение скрытой проводки бесконтактным способом.
  3. Определение места обрыва кабеля.
  4. Определение полярности элементов питания.
  5. Проверка целостности электрической цепи.

В зависимости от модификации отвертки она может иметь другие дополнительные функции.

Основные виды проверки

Проверить наличие фазы на проводнике можно несколькими способами.

При использовании тестера с неоновой лампой подойдет только контактный способ, а вот индикаторы со встроенными батарейками позволяют определить присутствие напряжения, не прикасаясь к самому проводнику.

Контактный способ

Чтобы определить фазу в сети переменного тока, необходимо прикоснуться щупом отвертки непосредственно к одной из клемм розетки.

Если светодиод загорелся – это фаза.

В противном случае на выбранной клемме ноль.

Внимание!

Следует помнить, если провод отключен от сети, либо же цепь оборвана, индикатор не будет гореть и на фазовом проводе.

Бесконтактный способ

Этот способ позволяет определить наличие переменного напряжения без прямого контакта с проводником.

Отвертка берется за жало, и подносится пятачком – контактом ручки к розетке.

Индикатор загорелся – напряжение есть.

Такой вариант подходит для поиска скрытой проводки в стене.

Помните!

Трение корпуса отвертки о какую-либо поверхность приводит к возникновению статического напряжения, из-за чего возможны ложные срабатывания.

Точность поиска проводки в стенах дома бесконтактным способом минимальна, а совсем бесполезна, если в стеновых панелях есть арматура, искажающая сигнал.

Двухпроводная сеть

С такой проводкой придется столкнуться жильцам старых домов. Обозначается этот вариант как TN-C и его суть в том, что нулевой провод, который заземлен на подстанции, также является и заземляющим. То есть, в двухпроводной сети вы просто не найдете заземляющего проводника, так как его функции выполняет ноль. Фаза с нолем определяется элементарно: приложите индикатор к каждой из жил, если произошло соприкосновение с фазой – загорится лампа индикатора.

Стоит заметить, что такой вариант проводки является устаревшим, так как на всех вилках новых электрических приборов предусмотрены три клеммы.

Способы определения ноля, фазы и заземления могут отличаться в зависимости от системы проводников, которые проходят в помещении.

Трехпроводная сеть

Такой тип сети предусматривает ввод в квартиру или дом трех проводников. Трехпроводная сеть делится на несколько видов. Если разбирать систему TN-S, то там защитное заземление и ноль выводятся от питающей подстанции отдельно.

Назначение проводов в таком типе электросети можно узнать таким путем:

  • в распредкоробке или щитке с помощью индикатора определить фазу;
  • оставшиеся — это ноль и защитное заземление. Стоит отсоединить один из проводов от щитка;
  • если вы отключили рабочий ноль, то все электрические приборы в помещении выключатся. Методом исключения получаем определение третьего проводника, который исполняет функции защитного заземления.

Теперь стоит узнать фазу, ноль и землю в розетке (в том случае, если они не указаны различными цветами обмотки). Возьмите патрон, в который вкручена лампа и выведены провода, и прикоснитесь одним из них к фазе, которую вы уже нашли индикатором. Вторым проводом, выходящим из патрона, по очереди прикоснитесь к двум оставшимся жилам. Если на щитке не включен ноль – лампа загорится только при соприкосновении с землей.

При обращении с разводкой типа TN-C-S, защитное заземление и ноль расходятся не от подстанции, а при вводе проводников в помещение. В таком случае стоит руководствоваться планом, который был описан для определения назначения проводов системы TN-S. Также, осмотрев место разделения PEN, по сечению жилы можно отличить рабочий ноль от заземления.

При выполнении заземления системой TT, дом оснащен собственным заземляющим устройством, от которого ведется разводка защиты. В данном случае ноль, фаза и земля определяются с помощью нахождения заземляющего провода по прокладочной трассе.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • ⚡жалом отвертки прикасаетесь к контакту
  • ⚡нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • ⚡если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевой

Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • ⚡никогда не дотрагивайтесь до нижней части отвертки при замерах
  • ⚡отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • ⚡если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.

Проверка целостности провода

Чтобы выполнить данное измерение, нам потребуется два оголённых конца электрического провода.

Один из концов зажимаем пальцами, до второго дотрагиваемся жалом отвёртки, одновременно нажав пальцем на верхней контакт ручки. Если индикатор загорится — провод не повреждён. Если не горит — значит, где-то присутствует обрыв провода.

Дополнительные возможности применения индикатора

Возможности простой индикаторной отвертки могут быть значительно расширены и многие попросту не знают, что помимо привычной проверки наличия или отсутствия напряжения, этим прибором можно выполнять множество задач и искать различные неисправности.

Вот как это можно использовать на практике.

Проверка исправности ламп накаливания

Данную проверку можно производить непосредственно в магазине, не имея под рукой ничего кроме отвертки. Берете обыкновенную лампочку, одной рукой обхватываете металлический цоколь, а пальцем другой руки касаетесь контакта в верхней части отвертки.

После этого жалом дотрагиваетесь до центрального контакта на лампочке.

Если лампа исправна, светодиод загорится.

Правда 100% уверенности данная проверка не дает, так как если лампа разгерметизировалась, светиться она не будет, хотя цепь и остается при этом целой.

Проверка нагревательного тэна

Также можно легко проверить исправность или поломку нагревательного тэна. При этом его даже не обязательно вытаскивать наружу из оборудования.

Достаточно обеспечить свободный доступ к контактам. Перед этим все посторонние провода подключенные к ним требуется откинуть.

Проверка очень проста и не замысловата. Одной рукой касаетесь одного контакта тэна, а жалом отвертки другого. Палец второй руки опять должен быть на металлическом пятачке пробника.

Если лампочка индикатора при этом не горит, значит тэн не исправен и внутри него обрыв нагревательной спирали.

Таким образом можно проверять любые нагревательные элементы. Например, кипятильник проверяется непосредственно на самой вилке, даже разбирать ничего не нужно.

Определение правильного положения выключателя

Чтобы при ремонте смонтировать выключатель правильно, то есть:

Клавиша вверхсвет включаетсяКлавиша внизсвет отключается

также можно воспользоваться пробником и прозвонить контакты.

Предварительно выключатель разбирается. Контакты у него обычно закрыты и поэтому просто подлезть руками к ним не получится.

Берете любой металлический предмет, например скрепку или гвоздик и прикасаетесь к одному из контактов. Не важно к какому – верхнему или нижнему.

Индикаторная отвертка ставится на другой контакт. В отключенном положении выключателя светодиод не горит и наоборот. Оставляете выключатель во включенном состоянии, собираете его и в таком положении монтируете на стену.

Проверка напряжения на изолированном проводе

Если вы занимаетесь капитальным ремонтом в квартире, то наверняка сталкивались с ситуацией, когда после снятия старой штукатурки вдруг обнаруживается какой-то ранее не известный провод.

При этом абсолютно не понятно под напряжением он или нет. Перекусывать его кусачками нельзя, зачищать и оголять изоляцию тоже опасно.

Здесь опять на помощь приходит универсальная отвертка. Только использовать ее нужно несколько наоборот.

Рукой обхватываете не изолированную верхнюю часть отвертки, а берете ее непосредственно за жало.

При этом верх с металлическим пятаком, подносите к изоляции провода. Провод при этом может быть даже под штукатуркой.

В таком положении чувствительность пробника выше и если в кабеле есть напряжение, то отвертка это покажет. Свечение может быть не таким ярким, но оно все равно будет.

Достоинства и недостатки

Преимущества индикатора с батарейкой:

  • недорогой
  • много дополнительных функций
  • простое применение, не требующее долгого изучения инструкций

Недостатки:

  • влияние наведенного напряжения
  • невозможность использования жала отвертки по прямому назначению
  • неработоспособность при более глубоком залегании кабеля в штукатурке
  • погрешность при недостаточном заряде батареек

Советы от электрика

Владельцу, не обладающему широкими познаниями в области электротехники, важно прислушиваться к следующим рекомендациям опытных электриков:

  1. При использовании мультиметра необходимо детально изучить руководство по эксплуатации прибора, чтобы правильно вставить контакты щупов и настроить аппарат.
  2. Способ с контрольной лампой связан с повышенным риском поражения электрическим током, поэтому к нему не рекомендуется прибегать пользователю, у которого отсутствуют навыки электромонтажных работ.
  3. Не следует слепо полагаться на наличие маркировки или цветовое оформление изоляции проводов, без предварительной инструментальной проверки, поскольку не исключена вероятность ошибки при монтаже.

Правильно определённая принадлежность проводов позволит верно выполнить домашнюю проводку и подключить оборудование, обеспечив безопасность потребителя.

Полезные советы и общие рекомендации

Работа с электропроводкой требует внимательности и осторожности.

Электрики советуют:

  1. Не полагаться полностью на цветовую дифференциацию проводов или их маркировку, проверять контакты тестерами еще раз. Случаи нарушения норм электромонтажа нередки.
  2. По возможности избегать определения напряжение в проводниках с помощью «контрольки» или картофелины. Такие способы считаются экстремальными, и без опыта работы ими лучше не злоупотреблять.
  3. При эксплуатации мультиметра подробно изучить инструкцию перед применением. Обратить внимание на настройку прибора.

Монтаж проводки по стандартам облегчит дальнейшее подключение приемников и продлит срок службы всей электросети. Кроме того, выполнение необходимых норм по установке сделает потребление электроэнергии комфортным и безопасным.

 

Предыдущая

РазноеЭлектрическая энергия: что это такое, формулы, единица измерения

Следующая

РазноеОсциллограмма что это такое?

как найти и определить землю в щитке? Как проверить фазу и отличить ее от нуля?

  1. Разновидности и функции отверток
  2. Как проверить фазу и ноль?
  3. Меры безопасности

Проблемы с электропроводкой и электроприборами в наши дни – обычное дело, которое должен легко решить каждый уважающий себя мужчина, не имеющий даже соответствующего технического образования. Следует сказать, что это возможно благодаря наличию массы вспомогательных устройств для устранения неполадок в электропроводке. А зная основы того, как устроена электропроводка и основные устройства такого типа, можно легко решить многие задачи. Например, определить ноль и фазу или отличить фазу от нуля с помощью специальной индикаторной отвертки.

Разновидности и функции отверток

Внешне рассматриваемое устройство похоже на простейшую отвертку. Разница будет видна в ручке. В рассматриваемом варианте этого инструмента в корпусе рукоятки имеется резистор, соединенный с жалом из металла. Именно он будет служить ориентиром.

Наличие резистивной части позволяет снизить силу тока до максимальной , что позволяет максимально безопасно использовать такую ​​отвертку. В корпус устройства также встроен светодиод или лампочка на неоновой основе, которая подключается к накладке внешнего типа на контактной пластине, расположенной снаружи устройства. Получается, что электричество проходит через щуп и затем через резистор снижается до такого уровня, чтобы его показатель был максимально безопасным для работы. Это основной аспект использования индикаторной отвертки.

Если говорить о категориях таких отверток, то последние представленные на рынке модели могут находить напряжение в сердечнике даже через слой глины, побелки или штукатурки, что будет крайне удобно, т. к. избавит от необходимости ломать деталь стены, чтобы добраться непосредственно до провода.

В целом алгоритм действия таких средств в большинстве случаев одинаков. Хотя есть различия, возникающие в зависимости от категорий, моделей и неявных функций, которыми обладает та или иная модель с индикаторной функцией. Так уж сложилось, что по своим функциональным возможностям такая отвертка индикаторного типа может заменить ряд довольно дорогого оборудования. Например, есть решения на батарейках, которые позволяют проверить целостность проводов, даже когда они обесточены и по ним не протекает ток.

Такие опции дадут следующую информацию о проверяемой цепи:

  • наличие звукового сигнала позволит понять есть ли напряжение в цепи или его нет;
  • цифровой дисплей показывает значение напряжения, которое обычно отображается в вольтах;
  • применение рассматриваемой отвертки позволяет проверять цепи переменного и постоянного тока в бытовых электроприборах;
  • установка полярности сети;
  • целостность электрической цепи посредством звуковой или световой индикации.

Важно! Любая отвертка индикаторного типа обязательно будет иметь нижний и верхний предел измерения напряжения. Выход за эти пределы практически в 100% случаев приведет к неисправности и поломке устройства.

Обычно существует две категории отверток этого типа.

  • С неоновой лампой. Эта опция является общей и ее структура описана выше. Преимуществом такого решения будет дешевизна и простота. Недостатком является небольшой диапазон напряжения, с которым можно работать. Как правило, речь идет о диапазоне от 9от 0 до 380 вольт. Да и фазный провод можно определить в этом случае только при непосредственном электрическом контакте.
  • Со светодиодом. Вариант с сигнализатором на светодиоде будет немного другим. Здесь следует учесть, что для его питания сила тока в обычной схеме будет небольшой. Поэтому используется так называемый преобразователь времени. Диод будет работать в импульсном режиме. Во сколько раз уменьшится непрерывное свечение, во столько же раз возрастет сила тока, проходящего через диод.

Из-за наличия ограничительного резистора щуп подключается к разнополярному контакту на выпрямителе диодного моста. А второй контакт выведен на рукоятку индикатора, чтобы его можно было потрогать пальцем. Возникшая небольшая постоянная уходит на накопительный конденсатор. После этого включается транзистор лавинного типа, который включается по обратной схеме. В конце всего этого на светодиод поступает пульсирующий ток. Такой шуруповерт может осуществлять фазодиагностику даже при напряжении 45 вольт. А если подключить не щуп, а небольшую антенну, то можно легко найти переменное электрическое поле.

Если говорить об области применения, то с помощью таких отверток можно выполнять следующие виды работ:

  • проверка подключения фазного провода к розетке или контакту выключателя;
  • если не работает розетка на удлинителе, то можно проверить все розетки пробником;
  • проверить, куда именно подключается фаза на патроне: к основному контакту или к резьбе;
  • узнать есть ли напряжение в определенном электроприборе;
  • проверить качество заземляющего проводника.

Как проверить фазу и ноль?

Теперь приступим непосредственно к проверке нуля и фазы. Но прежде чем приступить к работе такого типа, следует проверить работоспособность самого устройства, , чтобы оно отображало правильные данные, чтобы можно было предпринять нужные действия, выполнив следующие действия:

  1. сначала следует выполнить произвести визуальный осмотр и убедиться, что конструкция устройства полностью цельная и не имеет механических повреждений;
  2. после выполнения данного действия, если недостатков не обнаружено, следует протестировать устройство;
  3. При проверке щуп необходимо ввести в оба отверстия рабочего гнезда, при этом требуется держать большой палец на части ручки диэлектрического датчика — если что-то не так, то индикатор работать не будет ;
  4. при использовании раствора с индикатором неонового типа на аккумуляторе биту отвертки и накладку можно зажать пальцами; если световой диод активирован, это будет означать, что устройство работает правильно.

      Поясним определение фазы и нуля на самой обычной розетке. Вам необходимо вставить отвертку в одно из отверстий гнезда и, как описано выше, коснуться пальцем пластины ручки. Если индикатор активирован, значит, фаза найдена. Затем вставляем устройство в другое отверстие — срабатывания лампочки происходить не должно. Если все как надо, то ноль.

      Если он и тогда светится от нулевого провода, что вроде бы невозможно, то это значит, что есть две фазы. Бояться не стоит, ведь такое возможно, если просто пропал контакт на нулевом кабеле. Например, это могло произойти где-нибудь в коробке. Двух фаз в розетке быть не может никак: одна просто пойдет во второе отверстие через какие-то включенные электроприборы (лампочки, стиральные машины, холодильники и так далее).

      Следует отметить, что довольно часто многие путают простую индикаторную отвертку с циферблатным вариантом. Во втором случае шуруповерты имеют аккумулятор. Если с помощью такой отвертки проводить определение земли, то пятку трогать не нужно. Или свет будет активным, как в случае касания фазы, так и при касании нуля.

      Меры безопасности

      При работе с индикаторной отверткой необходимо знать следующие правила:

      • ни в коем случае нельзя пользоваться отверткой без винта;
      • из устройства можно вынуть только аккумулятор и ничего больше;
      • при замене аккумулятора винт следует закручивать как можно сильнее, что делается по часовой стрелке;
      • запрещается использовать устройство, имеющее механические повреждения;
      • не использовать отвертку в условиях повышенной влажности;
      • крайне опасно использовать в сетях с несоответствующими стандартами напряжения.

      Не лишним будет помнить о следующих основных мерах безопасности при работе с электропроводкой:

      • не брать щупы прибора за оголенные части во избежание поражения электрическим током;
      • ни в коем случае нельзя искать проводку голыми руками — делать это необходимо в резиновых перчатках и иметь обувь на резиновой подошве;
      • руки также должны быть сухими;
      • иногда можно измерить сопротивление, а не напряжение, чтобы указать ноль и землю; в этом случае следует быть предельно осторожным.

      Это ряд довольно простых правил, но их строгое и четкое выполнение гарантирует сохранение здоровья и безопасности на работе. А вообще, как видите, определить фазу и ноль индикаторной отверткой очень просто. Главное соблюдать правила безопасности и принципы работы с электроприборами, а также с электрическими сетями.

          Как определить фазу и ноль индикаторной отверткой смотрите в видео ниже.

          Комментарий успешно отправлен.

          Рекомендуется прочитать

          Как проверить конденсатор?

          В этом уроке мы увидим, как проверить конденсатор и выяснить, работает ли конденсатор правильно или он неисправен. Конденсатор — это электронный/электрический компонент, который хранит энергию в виде электрического заряда. Конденсаторы часто используются в платах электроники или нескольких электрических приборах и выполняют множество функций.

          Описание

          Зачем нужно проверять конденсатор?

          Когда конденсатор помещается в активную цепь (цепь с текущим активным током), в конденсаторе начинает накапливаться заряд (на одной из его пластин), и как только пластина конденсатора больше не может принимать заряд, это означает, что конденсатор полностью заряжен.

          Теперь, если цепь требует этого заряда (например, байпасный конденсатор), конденсатор отдает заряд обратно в цепь, и это продолжается до тех пор, пока заряд не будет полностью высвобожден или цепь не перестанет требовать. Эти действия называются зарядкой и разрядкой конденсатора.

          Конденсаторы можно разделить на электролитические и неэлектролитические. Как и все электрические и электронные компоненты, конденсатор также чувствителен к скачкам напряжения, и такие колебания напряжения могут необратимо повредить конденсаторы.

          Электролитические конденсаторы часто выходят из строя из-за того, что разряжают больший ток за короткий промежуток времени, или не могут удерживать заряд из-за высыхания с течением времени. С другой стороны, неэлектролитические конденсаторы выходят из строя из-за утечек.

          Существуют различные методы проверки работоспособности конденсатора. Давайте посмотрим на некоторые методы проверки конденсатора.

          ПРИМЕЧАНИЕ: Некоторые из упомянутых здесь методов могут быть не лучшими способами проверки конденсатора. Но мы включили эти методы только для того, чтобы уточнить возможности. Будь очень осторожен.

          Как разрядить конденсатор?

          Прежде чем продолжить и рассмотреть различные методы проверки конденсатора, давайте разберемся, как правильно разрядить конденсатор. Это очень важно, потому что конденсаторы могут удерживать заряд, даже если источник питания отключен. Если конденсатор не разряжен должным образом и если вы случайно коснетесь его выводов, он разрядится через ваше тело и вызовет поражение электрическим током.

          Есть несколько способов разрядить конденсатор. Будет специальное руководство о том, как разрядить конденсатор, но пока давайте очень кратко рассмотрим оба этих метода.

          Использование отвертки

          ПРЕДУПРЕЖДЕНИЕ: Этот метод не является предпочтительным (особенно если вы новичок), так как при разрядке будут образовываться искры, которые могут вызвать ожоги или другие повреждения. Используйте этот метод в крайнем случае.

          Если конденсатор находится в цепи (на печатной плате), то правильно выпаивайте его и следите за тем, чтобы не касаться выводов конденсатора. Теперь возьмите изолированную отвертку (с более длинной ручкой) и держите ее в одной руке. Возьмите конденсатор в другую руку и коснитесь металлической частью отвертки обоих выводов конденсатора.

          Вы увидите искры и услышите потрескивание, что указывает на электрический разряд. Повторите пару раз, чтобы убедиться, что конденсатор полностью разряжен.

          Использование разрядного резистора (разрядного резистора)

          Теперь мы увидим безопасный способ разрядить конденсатор. Этот метод часто используется в источниках питания и других подобных схемах, где резистор, известный как продувочный резистор, размещается параллельно выходному конденсатору, чтобы при отключении питания оставшийся заряд в конденсаторе разряжался через этот резистор. .

          Возьмите резистор большого номинала (обычно несколько кОм) с высокой номинальной мощностью (например, 5 Вт) и подключите его к клеммам конденсатора. Вместо прямого подключения вы можете использовать провода с зажимами типа «крокодил» на обоих концах. Конденсатор будет медленно разряжаться, и вы можете контролировать напряжение на клеммах конденсатора с помощью мультиметра.

          Существует простой в использовании «Калькулятор безопасного разряда конденсаторов» от Digi-Key. Используйте этот инструмент в качестве отправной точки.

          Например, предположим, что у нас есть конденсатор емкостью 1000 мкФ, рассчитанный на 50 В, и мы хотим разрядить этот конденсатор до 1 В. При использовании резистора 1 кОм разрядка конденсатора займет почти 4 секунды. Кроме того, номинальная мощность резистора должна быть не менее 2,5 Вт.

          ПРИМЕЧАНИЕ. Резисторы большой мощности обычно дороже обычных резисторов (1/4 Вт или 1/2 Вт).

          Метод 1 Проверка конденсатора с помощью мультиметра с настройкой емкости

          Это один из самых простых, быстрых и точных способов проверки конденсатора. Для этого нам понадобится цифровой мультиметр с функцией измерения емкости. Большинство цифровых мультиметров среднего и высокого класса включают эту функцию.

          Измеритель емкости цифровых мультиметров часто отображает емкость конденсатора, но некоторые измерители отображают другие параметры, такие как ESR, утечка и т. д.

          • Чтобы проверить конденсатор с помощью цифрового мультиметра с измерителем емкости, можно последовал.
          • Отсоедините конденсатор от печатной платы и полностью разрядите его.
          • Если на корпусе видны номиналы конденсаторов, запишите их. Обычно емкость в фарадах (часто в микрофарадах) напечатана на корпусе вместе с номинальным напряжением.
          • В цифровом мультиметре установите ручку для измерения емкости.
          • Подсоедините щупы мультиметра к выводам конденсатора. В случае поляризованного конденсатора подсоедините красный щуп к положительной клемме конденсатора (как правило, более длинный провод), а черный щуп к отрицательной клемме (обычно сбоку будет маркировка). В случае неполяризованного конденсатора подключите его любым способом, так как они не имеют полярности.
          • Теперь проверьте показания цифрового мультиметра. Если показания мультиметра ближе к реальным значениям (указанным на конденсаторе), то конденсатор можно считать исправным.
          • Если разница между фактическим значением и измеренным значением значительно велика (а иногда и равна нулю), то следует заменить конденсатор, так как он сдох.

          С помощью этого метода можно измерять емкости конденсаторов от нескольких нанофарад до нескольких сотен микрофарад.

          Метод 2 Проверка конденсатора с помощью мультиметра без настройки емкости

          Большинство бюджетных и дешевых цифровых мультиметров не имеют измерителя емкости или настроек емкости. Даже с помощью этих мультиметров мы можем проверить конденсатор.

          • Снимите конденсатор со схемы или платы и убедитесь, что он полностью разряжен.
          • Настройте мультиметр на измерение сопротивления, т. е. установите ручку в положение «Ом» или «Настройки сопротивления». Если имеется несколько диапазонов измерения сопротивления (на ручном мультиметре), выберите более высокий диапазон (часто от 20 кОм до 200 кОм).
          • Подсоедините щупы мультиметра к выводам конденсатора (красный к плюсу и черный к минусу в случае поляризованных конденсаторов).
          • Цифровой мультиметр покажет значение сопротивления на дисплее, и вскоре он покажет сопротивление разомкнутой цепи (бесконечность). Запишите показания, которые отображались за этот короткий период.
          • Отсоедините конденсатор от мультиметра и повторите проверку несколько раз.
          • При каждой попытке проверки на дисплее должен отображаться одинаковый результат для исправного конденсатора.
          • Если при дальнейших проверках сопротивление не изменилось, конденсатор разряжен.

          Этот метод проверки конденсатора может быть неточным, но может отличить хорошие конденсаторы от плохих. Этот метод также не дает емкости конденсатора.

          Метод 3 Проверка конденсатора путем измерения постоянной времени

          Этот метод применим только в том случае, если значение емкости известно и если мы хотим проверить, исправен ли конденсатор или разряжен. В этом методе мы измеряем постоянную времени конденсатора и получаем емкость из измеренного времени. Если измеренная емкость и фактическая емкость одинаковы, то конденсатор исправен.

          ПРИМЕЧАНИЕ: Осциллограф будет лучшим инструментом для этого метода, чем мультиметр.

          Постоянная времени конденсатора — это время, необходимое конденсатору для зарядки до 63,2% приложенного напряжения при зарядке через известный резистор. Если C — емкость, R — известный резистор, то постоянная времени TC (или тау в греческом алфавите — τ) определяется как τ = RC.

          • Сначала убедитесь, что конденсатор отсоединен от платы и правильно разряжен.
          • Подключите известный резистор (обычно резистор 10 кОм) последовательно с конденсатором.
          • Замкните цепь, подключив блок питания известного напряжения.
          • Включите источник питания и измерьте время, необходимое для зарядки конденсатора до 63,2 % напряжения питания. Например, если напряжение питания составляет 12 В, то 63,2% от него составляет около 7,6 В.
          • Используя это время и сопротивление, измерьте емкость и сравните ее со значением, напечатанным на конденсаторе.
          • Если они одинаковы или почти равны, конденсатор работает правильно. Если разница огромна, нам нужно заменить конденсатор.

          Также можно рассчитать время разряда. В этом случае можно измерить время, необходимое конденсатору для разряда до 36,8% пикового напряжения.

          Метод 4 Проверка конденсатора с помощью простого вольтметра

          Все конденсаторы рассчитаны на максимальное напряжение, при котором они могут быть использованы. Для этого метода проверки конденсатора мы будем использовать номинальное напряжение конденсатора.

          • Извлеките конденсатор из платы или цепи и разрядите его должным образом. При желании вы можете удалить из цепи только один вывод.
          • Найдите номинальное напряжение на конденсаторе. Обычно оно обозначается как 16 В, 25 В, 50 В и т. д. Это максимальное напряжение, которое может выдержать конденсатор.
          • Теперь подключите выводы конденсатора к источнику питания или аккумулятору, но напряжение должно быть меньше максимально допустимого. Например, для конденсатора с максимальным номинальным напряжением 16 В можно использовать батарею на 9 В.
          • Если у вас стендовый блок питания, то можно установить напряжение меньше номинального напряжения конденсатора.
          • Зарядите конденсатор на короткое время, скажем, 4–5 секунд, и отключите питание.
          • Установите на цифровом мультиметре настройки вольтметра постоянного тока и измерьте напряжение на конденсаторе. Подсоедините соответствующие клеммы вольтметра и конденсатора.
          • Начальное значение напряжения на мультиметре должно быть близко к напряжению питания исправного конденсатора. Если разница большая, то конденсатор неисправен.

          Во внимание следует принимать только начальные показания мультиметра, так как значение будет медленно падать. Это нормально.

          Метод 5 Проверка конденсатора с помощью аналогового мультиметра (AVO Meter)

          Аналоговые мультиметры, как и цифровые мультиметры, могут измерять различные величины, такие как ток (А), напряжение (В) и сопротивление (О). Чтобы протестировать конденсатор с помощью аналогового мультиметра, мы собираемся использовать его функции омметра.

          •  Как обычно, отключите конденсатор и разрядите его. Вы можете разрядить конденсатор, просто закоротив провода (очень опасно — будьте осторожны), но самый простой способ — использовать нагрузку, такую ​​как резистор высокой мощности или светодиод.
          • Переведите аналоговый мультиметр в положение омметра и, если имеется несколько диапазонов, выберите более высокий диапазон.
          • Подключить выводы конденсатора к щупам мультиметра и наблюдать за показаниями мультиметра.
          • У хорошего конденсатора сопротивление вначале будет низким и будет постепенно увеличиваться.
          • Если сопротивление все время низкое, конденсатор закорочен, и его необходимо заменить.
          • Если стрелка не движется или сопротивление всегда показывает более высокое значение, конденсатор является открытым конденсатором.

          Это испытание может применяться как к конденсаторам для сквозного, так и для поверхностного монтажа.

          Метод 6 Замыкание выводов конденсатора (Традиционный метод – только для профессионалов)

          Описанный здесь метод является одним из старейших методов проверки конденсатора и проверки его исправности или неисправности.

          Предупреждение: Этот метод очень опасен и предназначен только для профессионалов. Его следует использовать как последний вариант для проверки конденсатора.

          Безопасность: Метод описан для источника питания 230 В переменного тока. Но из соображений безопасности можно использовать источник постоянного тока 24 В. Даже при 230 В переменного тока нам необходимо использовать последовательный резистор (с высокой номинальной мощностью), чтобы ограничить ток.

          • Проверяемый конденсатор должен быть отсоединен от цепи и должным образом разряжен.
          • Подсоедините выводы конденсатора к клемме питания. Для 230 В переменного тока должны использоваться только неполяризованные конденсаторы. Для 24 В постоянного тока можно использовать как полярные, так и неполярные конденсаторы, но с правильным подключением для полярных конденсаторов.
          • Включите источник питания на очень короткое время (обычно от 1 до 5 секунд), а затем выключите его. Отсоедините выводы конденсатора от источника питания.
          • Замкните выводы конденсатора с помощью металлического контакта. Убедитесь, что вы правильно изолированы.
          • Искра от конденсатора может быть использована для определения состояния конденсатора. Если искра большая и сильная, то конденсатор исправен.
          • Если искра маленькая и слабая, нужно заменить конденсатор.