Индукционный водонагреватель своими руками: Индукционный нагреватель своими руками — 3 варианта сборки

Содержание

Индукционный водонагреватель своими руками

Сегодня при организации нагрева воды большое распространение получил индукционный водонагреватель. Эта востребованность обеспечена тем, что прибор является полностью экологически безопасным, не сушит и не пережигает воздух. Использование такого прибора может быть реализовано для проточного нагревания воды или в качестве нагревательного котла. Купить индукционный водонагреватель можно как в магазине, так и изготовить своими руками. Стоит отметить, что по техническим характеристикам он не уступит покупаемой модели, правда, будет выглядеть не так привлекательно, но стоит при этом намного меньше.

Содержание

  • 1 Особенности приборов
  • 2 Виды индукционных водонагревателей
  • 3 Особенности изготовления
    • 3.1 Вариант 1
    • 3.2 Вариант 2

Особенности приборов

Применение такого прибора в домашних условиях позволяет получить максимальную производительность и надежность в эксплуатации. При этом агрегат не нужно сопровождать особой документацией и разрешением для установки, например, как газовый бойлер. Применяя индукционный нагреватель в роли традиционного отопительного котла, в некоторых случаях не потребуется использование насоса. Движение теплоносителя достигается путем процессов конвекции: вода при большом нагревании превращается в пар.

Стоит отметить, что у индукционного водонагревателя есть масса преимуществ, которые выделяют его среди конкурентов.

  1. Стоимость такого устройство незначительная.
  2. Есть возможность собрать нагреватель самостоятельно.
  3. Не издает постороннего шума. Катушка в процессе работы достаточно сильно вибрирует, но она практически не ощутима.
  4. Из-за постоянной вибрации грязь и накипь не успевает прикрепляться к функциональным элементам, поэтому прибор не нуждается в регулярной чистке.
  5. В своем составе имеет тепловой генератор, который очень легко делается герметичным. Вода, выступающая теплоносителем, помещена в нагревательный элемент, благодаря чему энергия передается через магнитное поле. Здесь не требуется использование контактов, а соответственно сальников и различных уплотнительных резинок, которые имеют особенность быстро выходить из строя.
  6. Редко ломается, так как за нагрев воды отвечает простая трубка, в которой просто нечему сломаться или перегореть.

Выбирая индукционный водонагреватель, хозяин получает прибор с минимальным эксплуатационным обслуживанием, так как он состоит из небольшого числа составляющих. А они, в свою очередь, очень редко выходят из строя.

Принцип работы индукционного котла

Но и без недостатков нельзя обойтись. Как и в любом виде техники, они есть.

  1. Высокое потребление электроэнергии, которое выльется большими счетами за свет;
  2. Устройство очень сильно нагревается, причем горячим становится все вокруг, поэтому не стоит прикасаться к прибору во время его работы.
  3. Индукционный водонагреватель имеет сильную теплоотдачу, поэтому необходима установка датчика температуры, чтобы предотвратить перегрев прибора, и, соответственно, взрыв.

Виды индукционных водонагревателей

Все приборы подобного типа, которые могут быть изготовлены своими руками, можно разделить на две группы:

  1. Вихревые нагреватели индукторного типа, которые чаще всего используются в домах для выполнения функций отопления. Именно их процесс изготовления будет рассмотрен ниже.
  2. Обогреватели, конструкция которых подразумевает применение разных видов электронных узлов и деталей.

При создании вихревого индукционного нагревателя (или сокращенно ВИН) своими руками, следует предусмотреть следующие конструкционные узлы:

  • элемент, отвечающий за преобразование электроэнергии в ток высокочастотного типа;
  • индуктор (чаще всего выполняется в виде цилиндрическом элементе из медной проволоки), что при использовании выполняет функцию трансформатора, отвечающего за образование поля магнитного характера;
  • элемент, который будет играть роль нагревательного, располагается внутри самого индуктора.

Работа ВИН выглядит следующим образом.

  1. Высокочастотный ток из преобразователя передается на индуктор.
  2. В индукторе образуется магнитное поле, что в свою очередь создает потоки вихревого характера.
  3. Теплообменник под действием вихревых потоков достаточно быстро достигает высокой температуры и, соответственно, нагревает теплоноситель, который распространяет тепло дальше.

Схема современного водонагревателя

Одним из самых главных компонентов является индукционная катушка, к изготовлению которой стоит отнестись с особой внимательностью. Медная проволока очень аккуратно наматывается на трубу из пластика, причем число мотков не должно быть меньше 100.

Из представленного описания можно сделать вывод, что изготовить индукционный водонагреватель самостоятельно не сложно.

Особенности изготовления

Индукционный нагреватель своими руками можно изготовить двумя способами. Вкратце стоит рассмотреть каждый из них.

Вариант 1

Наиболее простой прибор (при этом он будет иметь высокую мощность) можно изготовить на основе печатной схемы. Среди особенностей схемы, которая будет использоваться в приборе, следует выделить следующие моменты:

  • вся конструкция, по сути, представлена мультивибратором с организацией высокой мощности;
  • особое внимание стоит уделить сопротивлению, так как именно оно будет предотвращать перегрев транзисторов;
  • индуктор в таком приборе должен быть выполнен в виде спирали из 6-8 витков медной проволоки;
  • в качестве регулятора можно использовать соответствующий элемент из блока питания компьютера и не задумываться над его контракцией.

Специалисты рекомендуют: чтобы избежать поломок из-за выделения сильной энергии, транзисторы лучше всего устанавливать на радиаторы специальной конструкции.

Вихревой индукционный нагреватель

Вариант 2

В основу изготовления такого прибора своими руками положено использование электронного трансформатора.

Суть такого способа изготовления индукционного водонагревателя состоит в следующем.

  1. Две трубы с использованием сварки стоит соединить так, чтобы визуально они походили на бублик. Этот элемент впоследствии будет играть роль как элемента для нагревания, так и проводника.
  2. На корпус потребуется намотать проволоку из меди.
  3. Чтобы обеспечить качественное и быстрое движение воды, в основной корпус приваривают 2 патрубка. В один из них вода будет поступать, а со второго выходить уже в саму систему.

Вот и все советы по тому, как собрать такой нагревательный прибор своими руками и обеспечить в доме качественное отопление и постоянное присутствие горячей воды.

рабочая схема из микроволновки, как сделать самодельную индуктор для металла

Индукционный метод нагревания весьма популярен для мастерских, работающих с металлами. Агрегат пригодится для мини кузниц, токарных цехов и слесарей. Высокая скорость нагрева, возможность плавки и последующего литья металла без газа и угля — далеко не полный перечень достоинств. Высокая температура создается за счет прохождения через заготовки тока максимальной частоты. Каждый, кто хоть немного знаком с электроникой, сможет собрать своими руками простой индукционный нагреватель.

Содержание

  1. Индукционный нагреватель воды своими руками
  2. Принцип работы индукционного нагревателя
  3. Сфера применения
  4. Схема
  5. Как сделать индукционный нагреватель своими руками — пошаговая инструкция
  6. Регулировка частоты
  7. Катушка индуктивности
  8. Модуль конденсатора
  9. Как сделать нагревательный элемент
  10. Видео — индукционная печь из сварочного инвертора
  11. Техника безопасности
  12. Преимущества и недостатки прибора

Индукционный нагреватель воды своими руками

Современные разработки и стремление конструкторов позволило задействовать индукционные обогреватели для поддержания комфортной среды в жилище. Индукционный бойлер имеет хорошие показатели эффективности и быстро обеспечивает контуры отопления подогретым теплоносителем. Помимо этого, можно установить косвенный нагрев и пользоваться горячей водой в бытовых целях.

К достоинства индукционного котла можно отнести:

  • бесшумность;
  • низкая стоимость при изготовлении своими руками;
  • вибрации во время работы помогают очистить внутреннюю часть агрегата;
  • ломаться в конструкции практически нечему.

Самодельный водяной нагреватель простейшей конструкции создается своими руками на базе электронной начинки сварочного аппарата. Для понимания основ необходимо разобрать основные составляющие агрегата, рассмотреть последовательность функционирования электронной схемы.

Принцип работы индукционного нагревателя

Каждая установка индукционного нагрева обязательно включает в свою конструкцию:

  • инверторный элемент — предназначен для трансформаций бытовой энергии в высокочастотные импульсы;
  • индуктор — служит для формирования электромагнитного поля;
  • нагревательный (рабочий) элемент — осуществляет разогрев воды или металла, в зависимости от того, зачем создается индукционная нагревательная установка.

Рабочая схема основана на последовательном функционировании всех элементов.

Выглядит это так:

  1. Инвертор производит преобразование тока низкой частоты в высокую, подает его на вторую ступень — индуктор.
  2. Катушка, выполненная по расчетам на условленное количество витков медной проволоки определенного сечения, формирует магнитное поле. Оно становится основанием для формирования вихревых потоков.
  3. Нагревательный компонент, смонтированный в индукторе, за счет прохождения через него вихревых токов от катушки получает мощный нагрев.
  4. Далее в схеме задействуется либо теплообменник с теплоносителем для системы отопления, либо камера нагрева. В последнюю помещаются металлические заготовки и формы для плавления металла. В качестве нагретой воды может использоваться и та жидкость, которую подают на контур индуктора. если он выполняется из медной трубки. Индукторная катушка может охлаждаться воздушно, но потребуется дополнительное устройство удаление лишней тепловой энергии.

Установка индукционного нагрева имеет достаточно простой принцип работы. Вместе с этим она эффективна и показывает стабильность работы с минимум отказов.

Сфера применения

Индукционные печи применяются не только для нагрева. Направления использования:

  • разнообразная закалка с формирование упрочненного слоя от 0.8 до 1.2 мм;
  • отжиг проволоки малого сечения;
  • пайка и индукционная сварка емкостей с тонкими стенками, из черных и цветных металлов;
  • напаивание режущей гарнитуры на инструмент для металлообработки;
  • плавка цветных и некоторых видов черных металлов;
  • разогрев заготовок для ковки — используется как индукционный горн;
  • скоростная сварка труб с прямым швом повышенного качества;
  • отопление и горячее водоснабжение. Индукционный нагреватель применим в качестве основного источника обогрева зданий;
  • автосервисы — разогрев прикипевших гаек и болтов локально для легко снятия агрегатов с авто.

В основном, простой индукционный нагреватель задействуется на объектах промышленного производства как в малых, так и крупных масштабах.

Самодельные установки на основе простейших схем, элементов из микроволновки находят применение у гаражных специалистов и в небольших домашних мастерских.

Схема

Упрощенная схема, рассчитанная на мощность в 1600 Вт. На практике работоспособный вариант, требующий определенных доработок и совершенствования.

Схема индукционного нагревателя имеет свои плюсы:

  • элементарные сборочно-монтажные процедуры;
  • компоненты схемы доступны для покупки.

Данный высокочастотный экспериментальный индукционный нагреватель функционирует на основе принципа «двойного полумоста». Схема дополнена транзисторами в количестве 4 шт, с защищенными изоляцией затворами. Серийная модель этого компонента — IGBT. Управление реализовано на микросхеме IR2153.

Конструкция обеспечивает создание мощности, равной по схеме полного моста. При функционировании на основе тактируемого полумостового драйвера затвора принципиальное построение агрегата упрощается как в проекте, так и в изготовлении и сборке, работе. Представленный диод двойного типа с увеличенной мощностью маркировки STTh300L06TV1 (2x 120A).

Для применения будет приемлемо задействовать в схеме диоды уменьшенной мощности — около 30А. Транзисторы IGBT в своем составе имеют встроенные диоды — это дополнительно упростит схему.

Показания рабочей частоты регулируются потенциометром. Появление резонанса отражается максимальной яркостью светодиодов.

Индукционные установки профессионального уровня имеют усложненные схемы с автоматической настройкой по основным показателям системы. Для простейших конструкций, таких как индукционный нагреватель воды выполненный своими руками, основным критерием будет являться простота в схеме. В этом случае при ошибке сборки или проектирования можно быстро устранить недочеты.

Как сделать индукционный нагреватель своими руками — пошаговая инструкция

Изготавливается индукционная сварка или простейший нагреватель из микроволновки — нужно знать, какие работы в нем будут проводиться. Исходя из размера помещаемых в зону нагрева заготовок могут меняться габариты индуктора, мощность конденсатора и технические характеристики изолирующего трансформатора.

В статье разобран пример того, как сделать тестовую индукционную печь и понять принцип работы таких устройств. Увеличение габаритов, изменение мощности и схемы устройства требует дополнительных расчетов и предварительного проектирования.

Для сборки агрегата потребуется закупить все представленные на схеме элементы силовой электроники. Часть компонентов возможно найти в магазинах радиодеталей, часть — на алиэкспресс.

Соединение в общую цепь производится методом пайки или с помощью болтов плюс изолирующие материалы. Отдельные умельцы задействуют готовые элементы, демонтированные своими руками из микроволновки. Установка высокочастотного индукционного нагрева требует особого внимания к 3 элементам цепи и происходящим в них процессам. Разберем подробнее каждый.

Регулировка частоты

Диапазон рабочей частоты устройства составляет от 110 до 210 кГц. Поэтому самодельный экспериментальный индукционный нагреватель должен иметь узел регулировки частоты. В цепи управления регулировкой задействуется питающее напряжение — примерно 15 В. В качестве источника используется адаптер малой мощности в обычном или коммутируемом исполнении.

Возможно использовать в схеме устройство регулировки с Алиэкспресс.

Магнитный нагреватель выходными контактами соединяется с рабочей цепью катушки. В качестве промежуточного звена используется согласующий дроссель L1 и трансформатор. Конструкция дросселя реализована в виде 4 витков провода, сердечник имеет поперчное сечение 23 см. Изолирующий трансформатор сформирован на основе 12 витков двухжильного провода сечением 16 мм². Поперечный размер сердечника — 14 см.

Можно использовать изолирующий трансформатор производства Magnetics, Inc. Данная фирма, а также Adams Magnetics делают качественное оборудование, в частности ферритовые торроиды.

Мощность подобного индукционного нагревателя, собранного своими руками, примерно равна 1. 6 кВт.

Катушка индуктивности

Установка для индукционного нагрева в конструкции имеет катушку. В качестве намотки применяется проволока сечением 3.3 мм. В качестве основания используется медная трубка. В конструкции катушки можно использовать простейшее водяное охлаждение. Особенности конструкции:

  • количество витков — 6;
  • сечение — 24 мм;
  • высота элемента — 23 мм.

В процессе работы схемы будет происходить существенный нагрев металла. Поэтому к качеству исполнения и выбранным материалам необходимо подходить особенно ответственно.

Полезная статья: Для чего применяется осциллятор

Модуль конденсатора

Резонансный конденсатор в примере выполнен в виде блока из нескольких емкостных элементов. Можно использовать одно устройство с емкостью 2.3 мкФ. В примере задействовано 23 единицы конденсаторов. Характеристики использованных элементов:

  • емкость — 100 нФ;
  • напряжение — 275 Вольт;
  • материал корпуса — полипропилен МКП;
  • класс Х2.

Данный вид конденсаторов не является целевым для создания подобных агрегатов. Индукционная сварка и нагревательные устройства чаще всего получают в схему ЭМИ фильтр. На практике же использованные емкостные элементы показали стабильную работу при условиях, когда частота составляла 160 кГЦ, выше не желательно.

Полезная статья: Сварочные соединения

Как сделать нагревательный элемент

Нагревательным элементом конструкции служит индуктор, то есть катушка. Поэтому для создания зоны нагрева внутри индуктора рассмотрим несколько случаев.

  1. Установка индукционного нагрева для отопления. В этом случае внутри катушки будет размещаться медная или стальная трубка, имеющая герметичное присоединение для подачи теплоносителя. За счет быстрого нагрева от спирали подогреватель должен пропускать через себя большое количество теплоносителя. Циркуляционный насос для такой схемы является обязательным элементом. Объем охлаждающего контура зависит от мощности и размеров индуктора.
  2. Индукционная сварка. Размер катушки и трубки, в которой будет происходить сварочный процесс зависит от технологической задачи.
  3. Индукционная печь для нагрева, плавки металла своими руками. Камера нагрева должна соответствовать размеру помещаемых форм, заготовок.

Вне зависимости от назначения агрегата потребуется уделить особое внимание не только конструктиву. Обязательно предусматривается возможность отвода лишнего тепла и электрозащита токоведущих элементов.

Полезная статья: Все виды сварки

Видео — индукционная печь из сварочного инвертора

Индукционную печь своими руками можно собрать на основе сварочного аппарата, которым не придется пользоваться в основных целях. Для этого производится модернизация присоединительных разъемов с заменой пластиковых элементов корпуса на металлический.

За счет высокого нагрева и активной теплопередачи в конструкции индуктора используется медная трубка, соединение — пайка высокотемпературным припоем. Допускается использование обжимных фитингов.

В приведенном примере задействуется графитовый тигель — в нем плавятся цветные металлы. Для увеличения мощность может быть использован более мощный сварочный аппарат. Подробнее в видео — индукционная печь для плавки металла на основе инвертора Интерскол.

Для отвода излишнего тепла установлены тройники — горячий воздух из контура индуктора выходит наружу. Устраивать дополнительную защиту нагревательного элемента можно с учетом отвода излишков тепла без перегрева блока питания.

Полезная статья: Плазма в домашних условиях

Техника безопасности

Индукционная сварка и установка для ее производства является особо опасными механизмами. Электрическая схема прибора присоединяется к сети с переменным током, напряжение может нанести серьезный вред здоровью. Поэтому монтаж всех токоведущих элементов производится с учетом изолирования. Проверка сборочных работ производится с помощью потенциометра или мультиметра.

Части, подверженные нагреву — индуктор и присоединяемые к нему участки схемы, могут стать причиной ожогов, опасны в пожарном отношении. Индукционная сварка и нагрев металлов может производиться только под присмотром. Помещение, где работает индуктивный агрегат, оснащается огнетушителями. Расплавленный металл даже в тигеле требует осторожного обращения до момента остывания.

Электромагнитное поле высокой частоты своим воздействие может навредить электронике и носителям информации типа hdd. Электромагнитные помехи могут стать причиной нестабильной работы гаджетов и бытовой техники.

Для безопасности и защиты от перегрева питающей сети обязательно оснастить схему с индуктором для твч дифавтоматами по номинальному току потребления установки.

Полезная статья: Уроки сварки инвертором для начинающих видео

Сделанный своими руками или приобретенный индукционный нагреватель — очень полезный и практичный агрегат для производственных цехов и автосервисов.

К плюсам можно отнести:

  1. Относительная экономичность в энергопотреблении. Коэффициент полезного действия — высокий.
  2. Универсальность выполняемых действий. Если позволяет рабочая область, можно выполнять: закаливания, наплавление, сварку, термическое упрочнение и множество других операций с металлами. Может использоваться и как горн.
  3. Направленый из индукционной печи поток энергии может проникать в заготовку на установленную глубину, если реализована хорошая схема управления устройством.
  4. Индукционный ТВЧ нагрев повышает качество обработки, снижая брак в процессе производства.
  5. Необходимо минимум времени от запуска устройства до начала работы с металлическими изделиями.
  6. Индукционный водонагреватель является одним из эффективнейших средств для отопления помещений. Вместе с тепловым аккумулятором может работать в районах, где питание в сети в холодное время нестабильно.

К недостаткам устройств относятся:

  1. Самодельный агрегат имеет небольшие зоны нагрева, плавление значительного объема металла затруднительно.
  2. Высокая стоимость заводских индукционных нагревателей. Поэтому мастера решаются сделать собственными руками свой индукционный нагреватель.

Установки на ТВЧ, заводского исполнения и самодельные, являются эффективным и экономичным инструментом металлообработки. Равномерное нагревание способствует качественному выполнению работ. Надежность конструкции позволяет устанавливать ее в отопление с водяными контурами.

Схема индукционного нагревателя водопроводной воды

железную трубку на устье крана или смесителя и пропустите железную трубу через катушку индукционного нагревателя. Индукционный нагреватель будет нагревать железную трубу, и, следовательно, вода, проходящая через трубу, также будет нагреваться и обеспечивать пользователя теплой водой с другого конца трубы.

Необходимые материалы

Для сборки этого проекта вам потребуются следующие основные материалы:

Готовая схема индукционного нагревателя, которая может питаться от источника постоянного тока 12 В, 10 ампер.

Соответствующим образом изготовленная металлическая труба с держателем из бакелита на одном конце, который можно прикрепить к отверстию крана.

Бакелитовая коробка соответствующих размеров для размещения индукционного нагревателя, индукционной катушки и металлической трубы.

Установка

Полную установку контура индукционного водонагревателя можно увидеть на следующей схеме: колпачок из бакелита. Бакелитовая крышка гарантирует, что тепло от утюга не сможет рассеяться на металл крана и останется неизменным внутри железной трубы.

Железная труба окружена катушкой индукционного нагревателя, или, другими словами, железная труба проходит через катушку индукционного нагревателя.

Диаметр металлической трубы необходимо выбирать таким образом, чтобы количество воды, проходящей через нее, было не слишком большим, и вода могла достаточно нагреться при прохождении через трубу. Вода, выходящая из трубы, должна быть теплой не менее 35 градусов Цельсия.

Как закрыть всю установку

Для схемы индукционного водонагревателя, описанной выше, потребуется соответствующий корпус, который должен быть легким, прочным, водонепроницаемым, термостойким и может быть присоединен к водопроводной системе вместе с железная труба.

Пример формата корпуса можно увидеть на следующем изображении.

Корпус должен иметь достаточную вентиляцию с нижней стороны, чтобы части индукционного нагревателя могли комфортно рассеивать тепло, не перегреваясь.

Питание цепи индукционного нагревателя, расположенной внутри, должно подаваться от внешнего блока SMPS, который может быть рассчитан на 12 В, 10 ампер.

Использование внешнего блока SMPS дает пользователю преимущество использования SMPS для других желаемых целей, когда нагреватель не используется.

Дешевле, чем коммерческий водонагреватель

Если вы сравните приведенный выше контур индукционного водонагревателя с имеющимися в продаже гейзерами и водонагревателями, вы обнаружите, что описанная выше установка намного дешевле и рентабельнее, чем коммерческие устройства.

Полная установка может быть построена менее чем за 20 долларов США, что на 50% меньше по сравнению с коммерческими единицами.

Кроме того, потребление электроэнергии может быть на 50% меньше для описанной выше концепции по сравнению с коммерческими нагревательными блоками, которые зависят от нагревательных змеевиков, а не от индукционной системы нагрева.

Кроме того, вы получаете бесплатное устройство SMPS, которое вы можете использовать для освещения светодиодов, управления усилителем мощности или усилителем сабвуфера, преимущество, которое вы никогда не получите с коммерческими обогревателями.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными схемами и учебными пособиями.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать через комментарии, я буду очень рад помочь!

Взаимодействие с читателями

Простая схема индукционного нагревателя своими руками

Этот замечательный небольшой проект демонстрирует принципы высокочастотной магнитной индукции и способы изготовления индукционного нагревателя. Схема очень проста в построении и использует только несколько общих компонентов. С показанной здесь индукционной катушкой схема потребляет около 5 А от источника питания 15 В, когда наконечник отвертки нагревается. Чтобы кончик отвертки стал красным, требуется примерно 30 секунд!

Схема управления использует метод, известный как ZVS (переключение при нулевом напряжении), для активации транзисторов, что обеспечивает эффективную передачу энергии. В схеме, которую вы видите здесь, транзисторы почти не нагреваются из-за метода ZVS. Еще одна замечательная особенность этого устройства заключается в том, что это саморезонансная система, которая автоматически работает на резонансной частоте подключенной катушки и конденсатора. Если вы хотите сэкономить время, в нашем магазине есть схема индукционного нагревателя. Возможно, вы все же захотите прочитать эту статью, чтобы получить несколько полезных советов о том, как заставить вашу систему работать хорошо.

Как работает индукционный нагрев?

При изменении магнитного поля вблизи металлического или другого проводящего объекта в материале индуцируется ток (известный как вихревой ток), который выделяет тепло. Выделяемое тепло пропорционально квадрату тока, умноженному на сопротивление материала. Эффекты индукции используются в трансформаторах для преобразования напряжения во всевозможных приборах. Большинство трансформаторов имеют металлический сердечник, поэтому при использовании в них индуцируются вихревые токи. Разработчики трансформаторов используют различные методы, чтобы предотвратить это, поскольку нагрев — это просто трата энергии. В этом проекте мы будем напрямую использовать этот эффект нагрева и попытаемся максимизировать эффект нагрева, создаваемый вихревыми токами.

Если мы подадим на катушку с проводом постоянно меняющийся ток, внутри нее будет постоянно меняющееся магнитное поле. На более высоких частотах эффект индукции довольно силен и имеет тенденцию концентрироваться на поверхности нагреваемого материала из-за скин-эффекта. Типичные индукционные нагреватели используют частоты от 10 кГц до 1 МГц.

ОПАСНО! Это устройство может создавать очень высокие температуры!

Схема

Используемая схема представляет собой коллекторно-резонансный генератор Ройера, преимущества которого заключаются в простоте и саморезонансной работе. Очень похожая схема используется в обычных схемах инвертора, используемых для питания флуоресцентного освещения, такого как подсветка ЖК-дисплея. Они управляют трансформатором с центральным отводом, который повышает напряжение примерно до 800 В для питания освещения. В этой схеме индукционного нагревателя своими руками трансформатор состоит из рабочей катушки и нагреваемого объекта.

Основным недостатком этой схемы является то, что требуется катушка с центральным отводом, которую может быть немного сложнее намотать, чем обычный соленоид. Катушка с центральным отводом необходима, чтобы мы могли создать поле переменного тока из одного источника постоянного тока и всего двух транзисторов N-типа. Центр катушки подключается к положительному источнику питания, а затем каждый конец катушки поочередно подключается к земле транзисторами, так что ток будет течь туда и обратно в обоих направлениях.

Величина тока, потребляемого от источника питания, зависит от температуры и размера нагреваемого объекта.

Из этой схемы индукционного нагревателя видно, насколько он на самом деле прост. Всего несколько основных компонентов — это все, что необходимо для создания рабочего устройства индукционного нагревателя.

R1 и R2 — стандартные резисторы 240 Ом, 0,6 Вт. Значение этих резисторов будет определять, как быстро МОП-транзисторы могут включаться, и должно быть достаточно низким значением. Однако они не должны быть слишком маленькими, так как резистор будет притянут к земле через диод, когда противоположный транзистор включится.

Диоды D1 и D2 используются для разрядки затворов MOSFET. Это должны быть диоды с малым падением напряжения в прямом направлении, чтобы затвор был хорошо разряжен, а полевой МОП-транзистор полностью отключался, когда другой открыт. Рекомендуется использовать диоды Шоттки, такие как 1N5819, так как они имеют низкое падение напряжения и высокое быстродействие. Номинальное напряжение диодов должно быть достаточным, чтобы выдержать повышение напряжения в резонансном контуре. В этом проекте напряжение поднялось аж до 70В.

Транзисторы T1 и T2 представляют собой полевые МОП-транзисторы на 100 В, 35 А (STP30NF10). Для этого проекта они были установлены на радиаторах, но почти не нагревались при работе на указанных здесь уровнях мощности. Эти полевые МОП-транзисторы были выбраны из-за низкого сопротивления сток-исток и малого времени отклика.

Катушка индуктивности L2 используется в качестве дросселя для защиты источника питания от высокочастотных колебаний и ограничения тока до допустимого уровня. Значение индуктивности должно быть довольно большим (у нас было около 2 мГн), но также оно должно быть выполнено из достаточно толстого провода, чтобы провести весь ток питания. Если дроссель не используется или он имеет слишком маленькую индуктивность, схема может не генерировать. Точное необходимое значение индуктивности зависит от используемого блока питания и настройки вашей катушки. Возможно, вам придется поэкспериментировать, прежде чем вы получите хороший результат. Тот, что показан здесь, был изготовлен путем намотки около 8 витков магнитной проволоки толщиной 2 мм на тороидальный ферритовый сердечник. В качестве альтернативы вы можете просто намотать провод на большой болт, но вам потребуется гораздо больше витков провода, чтобы получить ту же индуктивность, что и у тороидального ферритового сердечника. Пример этого вы можете увидеть на фото слева. В левом нижнем углу можно увидеть болт, обмотанный множеством витков аппаратного провода. Эта установка на макетной плате использовалась при малой мощности для тестирования. Для большей мощности пришлось использовать более толстую проводку и спаять все вместе.

Поскольку задействовано очень мало компонентов, мы припаяли все соединения напрямую и не использовали печатную плату. Это также было полезно для подключения сильноточных частей, поскольку толстый провод можно было напрямую припаять к клеммам транзистора. Оглядываясь назад, возможно, было бы лучше подключить индукционную катушку, прикрутив ее непосредственно к радиаторам на полевых МОП-транзисторах. Это связано с тем, что металлический корпус транзисторов также является клеммой коллектора, а радиаторы могут помочь охладить катушку.

Конденсатор C1 и катушка индуктивности L1 образуют резонансный контур индукционного нагревателя. Они должны выдерживать большие токи и температуры. Мы использовали полипропиленовые конденсаторы емкостью 330 нФ. Подробнее об этих компонентах показано ниже.

Индукционная катушка и конденсатор

Катушка должна быть изготовлена ​​из толстой проволоки или трубы, так как по ней будут протекать большие токи. Медная труба работает хорошо, так как высокочастотные токи в любом случае будут в основном течь по внешним частям. Вы также можете качать холодную воду через трубу, чтобы она оставалась прохладной.

Конденсатор должен быть подключен параллельно рабочей катушке для создания резонансного контура резервуара. Комбинация индуктивности и емкости будет иметь определенную резонансную частоту, на которой будет автоматически работать схема управления. Используемая здесь комбинация катушки и конденсатора резонировала на частоте около 200 кГц.

Важно использовать конденсаторы хорошего качества, способные выдерживать большие токи и тепло, рассеиваемое внутри них, иначе они скоро выйдут из строя и разрушят схему привода. Они также должны быть размещены достаточно близко к рабочей катушке и с использованием толстой проволоки или трубы. Большая часть тока будет протекать между катушкой и конденсатором, поэтому этот провод должен быть самым толстым. Провода, соединяющие цепь и блок питания, при желании можно сделать немного тоньше.

Эта катушка была сделана из латунной трубы диаметром 2 мм. Его было просто наматывать и легко паять, но вскоре он начинал деформироваться из-за избыточного нагрева. Затем витки соприкасались, замыкая и делая его менее эффективным. Поскольку схема управления оставалась относительно холодной во время использования, казалось, что ее можно заставить работать на более высоких уровнях мощности, но необходимо будет использовать более толстую трубу или охлаждать ее водой. Затем установка была улучшена, чтобы выдерживать более высокий уровень мощности…

Широкий ассортимент деталей для индукционных нагревателей

Готовая схема индукционного нагревателя Медная труба 4 мм
Предварительно собранная катушка индукционного нагревателя в сборе Кабель 30 А
Керамическая стойка Измеритель тока
Блок питания 12 В 15 А Вольтметр
Водяной насос 12 В Дроссель
Радиатор охлаждения Транзисторы 35А 100В
Силиконовая трубка ТО-220 Радиатор
Резисторы 240 Ом Быстродействующие диоды
Полипропиленовые конденсаторы Регулятор напряжения 12 В

Толкаем дальше

Основным ограничением описанной выше установки было то, что рабочая катушка через короткое время сильно нагревалась из-за больших токов. Чтобы иметь большие токи в течение более длительного времени, мы сделали еще один змеевик, используя более толстую латунную трубку, чтобы вода могла прокачиваться через нее во время работы. Более толстую трубу было труднее согнуть, особенно в центральной точке отвода. Перед изгибом необходимо было заполнить трубу мелким песком, чтобы предотвратить ее защемление в местах резких изгибов. Затем его очистили сжатым воздухом.

Индукционная катушка состоит из двух половин, как показано здесь. Затем они были спаяны вместе, и небольшой кусок трубы из ПВХ был использован для соединения центральных труб, чтобы вода могла проходить через весь змеевик.

В этой катушке было использовано меньше витков, чтобы она имела более низкий импеданс и, следовательно, выдерживала более высокие токи. Емкость также была увеличена, чтобы резонансная частота была ниже. В общей сложности было использовано шесть конденсаторов емкостью 330 нФ, что дало общую емкость 1,98 мкФ.

Кабели, подсоединяемые к катушке, были просто припаяны к трубе ближе к концам, оставив место для установки трубы из ПВХ.

Этот змеевик можно охлаждать, просто подавая воду прямо из-под крана, но для отвода тепла лучше использовать насос и радиатор. Для этого старый насос из аквариума поместили в коробку с водой, а к выпускному патрубку приделали трубу. Эта трубка подводила к модифицированному кулеру процессора компьютера, который использовал три тепловые трубки для отвода тепла.

Кулер был преобразован в радиатор, отрезав концы тепловых трубок, а затем соединив их с трубками ПВХ, чтобы вода проходила через все 3 тепловые трубки, прежде чем выйти и вернуться к насосу.

Если вы отрезаете тепловые трубки самостоятельно, делайте это в хорошо проветриваемом помещении, а не в помещении, так как они содержат летучие растворители, которые могут быть токсичными для дыхания. Вы также должны носить защитные перчатки, чтобы предотвратить контакт с кожей.

Этот модифицированный процессорный кулер был очень эффективным в качестве радиатора и позволял воде оставаться достаточно прохладной.

Другие необходимые модификации заключались в замене диодов D1 и D2 на диоды, рассчитанные на более высокое напряжение. Мы использовали обычные диоды 1N4007. Это было связано с тем, что с увеличением тока в резонансном контуре росло большее напряжение. Вы можете видеть на изображении здесь, что пиковое напряжение составляло 90 В (желтая кривая), что также очень близко к номинальному напряжению транзисторов 100 В.

Используемый блок питания был настроен на 30 В, поэтому необходимо было также подать напряжение на затворы транзисторов через стабилизатор напряжения 12 В. Когда внутри рабочей катушки не было металла, она потребляла около 7 А от источника питания. Когда был добавлен болт на фотографии, он увеличился до 10 А, а затем снова постепенно упал, поскольку он нагрелся выше температуры Кюри. Он, безусловно, превысит 10 А с более крупными объектами, но используемый блок питания имеет ограничение в 10 А. Вы можете найти подходящий блок питания 24 В, 15 А в нашем интернет-магазине.

Болт, который вы видите на фотографии раскаленным докрасна, достиг максимальной температуры примерно за 30 секунд. Отвертка на первом изображении теперь могла нагреваться докрасна примерно за 5 секунд.

Чтобы перейти на более высокую мощность, чем эта, необходимо было бы использовать другие конденсаторы или их больший массив, чтобы ток был более распределен между ними. Это связано с тем, что протекающие большие токи и используемые высокие частоты значительно нагревают конденсаторы. Примерно через 5 минут использования на этом уровне мощности индукционный нагреватель DIY нужно было выключить, чтобы он мог остыть. Также было бы необходимо использовать другую пару транзисторов, чтобы они могли выдерживать большие скачки напряжения.

В общем, этот проект меня вполне удовлетворил, так как он дал хороший результат, используя простую и недорогую схему. Как таковой, он может быть полезен для закалки стали или для пайки мелких деталей. Если вы решили сделать свой собственный проект индукционного нагревателя, пожалуйста, разместите свои фотографии ниже. Пожалуйста, прочитайте другие комментарии, прежде чем писать свои собственные, так как это может сэкономить вам время позже.

Если вы хотите смоделировать этот проект для тестирования различных значений индуктивности или выбора транзисторов, загрузите LTSpice и запустите это моделирование индукционного нагревателя своими руками (щелкните правой кнопкой мыши, «Сохранить как»)

Насколько жарко будет?

Трудно сказать, насколько горячо вы сможете что-то получить, так как нужно учитывать множество параметров. Различные материалы будут по-разному реагировать на индукционный нагрев, а их форма и размер будут влиять на то, как они нагреваются или отдают тепло в атмосферу.

Вы можете получить приблизительное представление, используя некоторые базовые расчеты по приведенной ниже формуле, или, если хотите, мы сделали удобный калькулятор мощности нагревателя, который может рассчитать это для вас. Эта форма включает материалы (например, воду), которые нельзя нагревать напрямую с помощью индукционных нагревателей, но она все же полезна, если вы пытаетесь, например, определить мощность, необходимую для нагрева кастрюли с водой с помощью индукционного нагревателя.

Устранение неполадок

Если у вас возникли проблемы с работой, вот несколько советов, которые помогут устранить неполадки в вашем домашнем проекте индукционного нагревателя….

Блок питания (блок питания)
Если блок питания не может обеспечить большой импульс тока при включении индукционного нагревателя, он не будет генерировать. Напряжение от источника питания в этот момент упадет (хотя блок питания может этого не отображать) и это помешает корректному переключению транзисторов. Чтобы решить эту проблему, вы можете подключить несколько больших электролитических конденсаторов параллельно источнику питания. Когда они заряжены, они смогут подавать большой импульсный ток в вашу цепь. Хорошим мощным источником питания будет наш блок питания постоянного тока 24 В 15 А.

Дроссель (индуктор L2)
Ограничивает мощность индукционного нагревателя. Если у вас нет колебаний, вам может понадобиться больше индуктивности, чтобы предотвратить падение напряжения в вашем блоке питания. Вам нужно будет поэкспериментировать с необходимой индуктивностью. Лучше иметь слишком много, чем слишком мало, так как это только ограничит мощность обогревателя. Слишком мало может означать, что это не сработает вообще. Если ваш сердечник катушки индуктивности слишком мал, большой ток насытит его, что приведет к протеканию слишком большого тока и потенциально может повредить вашу схему.

Электропроводка
Соединительные провода должны быть короткими, чтобы уменьшить паразитную индуктивность и помехи. Длинные провода добавляют в цепь нежелательное сопротивление и индуктивность, что может привести к нежелательным колебаниям или снижению производительности. Наш силовой кабель на 30 А хорошо подходит для этого.

Компоненты
Выбранные транзисторы должны иметь низкое падение напряжения / сопротивление в открытом состоянии, в противном случае они перегреются или даже предотвратят колебание системы. IGBT, вероятно, не будут работать, но большинство полевых МОП-транзисторов с аналогичными параметрами должны быть в порядке. Конденсаторы должны иметь низкое ESR (сопротивление) и ESL (индуктивность), чтобы они могли выдерживать высокие токи и температуры. Диоды также должны иметь низкое прямое падение напряжения, чтобы транзисторы правильно отключались. Они также должны быть достаточно быстрыми, чтобы работать на резонансной частоте вашего индукционного нагревателя.

Включение питания
При включении не должно быть металла внутри нагревательного змеевика. Это может привести к большим скачкам тока, которые могут помешать запуску колебаний, как указано выше. Также не пытайтесь нагревать большое количество металла. Этот проект подходит только для небольших индукционных нагревателей. Если вы хотите контролировать или постепенно увеличивать мощность, вы можете использовать одну из наших схем модулятора импульсов мощности. Подробнее см. сообщение 5108 ниже.

Мозг
Вам понадобится достаточно хорошо функционирующий мозг, чтобы сделать этот проект безопасным. Создание индукционного нагревателя может быть очень опасным, поэтому, если вы новичок в электронике, вам следует попросить кого-нибудь помочь вам сделать это. Подходите к делу логически; Если он не работает, проверьте, не неисправны ли используемые компоненты, проверьте правильность соединений, прочитайте всю эту статью и все комментарии, выполните поиск в Google, если вы не понимаете какие-либо термины, или прочитайте наш раздел «Изучение электроники».