Емкость конденсатора формулы: Емкость конденсаторов: определение, формулы, примеры.
Содержание
Емкость конденсаторов: определение, формулы, примеры.
Определение 1
Конденсатор – это совокупность двух любых проводников, заряды которых одинаковы по значению и противоположны по знаку.
Его конфигурация говорит о том, что поле, созданное зарядами, локализовано между обкладками. Тогда можно записать формулу электроемкости конденсатора:
C=qφ1-φ2=qU.
Значением φ1-φ2=U обозначают разность потенциалов, называемую напряжением, то есть U. По определению емкость положительна. Она зависит только от размерностей обкладок конденсатора их взаиморасположения и диэлектрика. Ее форма и место должны минимизировать воздействие внешнего поля на внутреннее. Силовые линии конденсатора начинаются на проводнике с положительным зарядом, а заканчиваются с отрицательным. Конденсатор может являться проводником, помещенным в полость, окруженным замкнутой оболочкой.
Выделяют три большие группы: плоские, сферические, цилиндрические. Чтобы найти емкость, необходимо обратиться к определению напряжения конденсатора с известными значениями зарядов на обкладках.
Плоский конденсатор
Определение 2
Плоский конденсатор – это две противоположно заряженные пластины, которые разделены тонким слоем диэлектрика, как показано на рисунке 1.
Формула для расчета электроемкости записывается как
C=εε0Sd, где S является площадью обкладки, d – расстоянием между ними, ε — диэлектрической проницаемостью вещества. Меньшее значение d способствует большему совпадению расчетной емкости конденсатора с реальной.
Рисунок 1
При известной электроемкости конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равняется di, вычисление диэлектрической проницаемости этого слоя εi выполняется, исходя из формулы:
C=ε0Sd1ε1+d2ε2+…+dNεN.
Сферический конденсатор
Определение 3
Когда проводник имеет форму шара или сферы, тогда внешняя замкнутая оболочка является концентрической сферой, это означает, что конденсатор сферический.
Он состоит из двух концентрических проводящих сферических поверхностей с пространством между обкладками, заполненным диэлектриком, как показано на рисунке 2. Емкость рассчитывается по формуле:
C=4πεε0R1R2R2-R1, где R1 и R2 являются радиусами обкладок.
Рисунок 2
Цилиндрический конденсатор
Емкость цилиндрического конденсатора равняется:
C=2πεε0llnR2R1, где l — высота цилиндров, R1 и R2 — радиусы обкладок. Данный вид конденсатора имеет две соосные поверхности проводящих цилиндрических поверхности, как показано на рисунке 3.
Рисунок 3
Определение 4
Важной характеристикой конденсаторов считается пробивное напряжение — напряжение, при котором происходит электрический разряд через слой диэлектрика.
Umax находится от зависимости от толщины слоя и свойств диэлектрика, конфигурации конденсатора.
Электроемкость плоского конденсатора. Формулы
Кроме отдельных конденсаторов используются их соединения. Наличие параллельного соединения конденсаторов применяют для увеличения его емкости. Тогда поиск результирующей емкости соединения сводится к записи суммы Ci, где Ci- это емкость конденсатора с номером i:
C=∑i=1NCi.
При последовательном соединении конденсаторов суммарная емкость соединения всегда будет по значению меньше, чем минимальная любого конденсатора, входящего в систему. Для расчета результирующей емкости следует сложить величины, обратные к емкостям отдельных конденсаторов:
Пример 1
Произвести вычисление емкости плоского конденсатора при известной площади обкладок
1 см2 с расстоянием между ними 1 мм. Пространство между обкладками находится в вакууме.
Решение
Чтобы рассчитать электроемкость конденсатора, применяется формула:
C=εε0Sd.
Значения:
ε=1, ε0=8,85·10-12 Фм;S=1 см2=10-4 м2;d=1 мм=10-3 м.
Подставим числовые выражения и вычислим:
C=8,85·10-12·10-410-3=8,85·10-13 (Ф).
Ответ: C≈0,9 пФ.
Пример 2
Найти напряженность электростатического поля у сферического конденсатора на расстоянии x=1 см=10-2 м от поверхности внутренней обкладки при внутреннем радиусе обкладки, равном R1=1 см=10-2 м, внешнем – R2=3 см=3·10-2 м. Значение напряжения — 103 В.
Решение
Производящая заряженная сфера создает напряженность поля. Его значение вычисляется по формуле:
E=14πεε0qr2, где q обозначают заряд внутренней сферы, r=R1+x — расстояние от центра сферы.
Нахождение заряда предполагает применение определения емкости конденсатора С:
q=CU.
Для сферического конденсатора предусмотрена формула вида
C=4πεε0R1R2R2-R1 с радиусами обкладок R1 и R2.
Производим подстановку выражений для получения искомой напряженности:
E=14πεε0U(x+R1)24πεε0R1R2R2-R1=U(x+R1)2R1R2R2-R1.
Данные представлены в системе СИ, поэтому достаточно заменить буквы числовыми выражениями:
E=103(1+1)2·10-4·10-2·3·10-23·10-2-10-2=3·10-18·10-6=3,45·104 Вм.
Ответ: E=3,45·104 Вм.
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Автор:
Роман Адамчук
Преподаватель физики
Электроемкость конденсатора — формула и определение
Электроемкость проводников
Проводники умеют не только проводить через себя электрический ток, но и накапливать заряд. Эта способность характеризуется таким параметром, как электроемкость.
Электроемкость C = q/φ С — электроемкость [Ф] q — электрический заряд [Кл] φ — потенциал [В] |
Практикующий детский психолог Екатерина Мурашова
Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков
Конденсаторы
Способность накапливать заряд — полезная штука, поэтому люди придумали конденсаторы. Это такие устройства, которые помогают применять электрическую емкость проводников в практических целях.
Конденсатор состоит из двух или более проводящих пластин (обкладок), разделенных диэлектриком. Между проводящими пластинами образуется электрическое поле, все силовые линии которого идут от одной обкладки к другой.
Зарядка конденсатора — это процесс накопления заряда на двух его обкладках. Заряды на них равны по величине и противоположны по знаку.
Электроемкость конденсатора измеряется отношением заряда на одной из обкладок к разности потенциалов между обкладками:
Электроемкость конденсатора C = q/U С — электроемкость [Ф] q — электрический заряд [Кл] U — напряжение (разность потенциалов) [В] |
По закону сохранения заряда, если обкладки заряженного конденсатора соединить проводником, то заряды нейтрализуются, переходя с одной обкладки на другую. Так происходит разрядка конденсатора.
Любой конденсатор имеет предел напряжения. Если оно окажется слишком большим, то случится пробой диэлектрика, то есть разрядка произойдет прямо сквозь диэлектрик. Такой конденсатор больше работать не будет.
Виды конденсаторов
Особенность электроемкости в том, что она зависит от формы проводника. Для каждого вида проводников есть своя формула расчета электроемкости.
Проще всего вычислить электроемкость плоского конденсатора. Плоский конденсатор состоит из двух металлических пластин, между которыми помещают диэлектрическое вещество.
Электроемкость плоского конденсатора — электроемкость [Ф] — относительная диэлектрическая проницаемость среды [—] — электрическая постоянная Ф/м — площадь пластин [м2] — расстояние между пластинами [м] |
Самый популярный конденсатор — цилиндрический. Он состоит из двух металлических цилиндров, вложенных друг в друга, и диэлектрика, которым заполнено пространство между ними. Рассмотрим формулу электроемкости такого конденсатора.
Электроемкость цилиндрического конденсатора — электроемкость [Ф] — относительная диэлектрическая проницаемость среды [—] — электрическая постоянная Ф/м — длина цилиндров [м] — радиусы цилиндров [м] — функция натурального логарифма, которая зависит от радиусов цилиндров |
Сферический конденсатор состоит из двух проводящих сфер, вложенных друг в друга, и непроводящей жидкости, которой заполнено пространство между ними.
Электроемкость сферического конденсатора — электроемкость [Ф] — относительная диэлектрическая проницаемость среды [—] — электрическая постоянная Ф/м — радиусы сфер [м] |
Подытожим все, что узнали, на картинке-шпаргалке:
Бесплатные занятия по английскому с носителем
Занимайтесь по 15 минут в день. Осваивайте английскую грамматику и лексику. Сделайте язык частью жизни.
Энергия конденсатора
У конденсатора, как и у любой системы заряженных тел, есть энергия. Чтобы зарядить конденсатор, необходимо совершить работу по разделению отрицательных и положительных зарядов. По закону сохранения энергии эта работа будет как раз равна энергии конденсатора.
Доказать, что заряженный конденсатор обладает энергией, несложно. Для этого понадобится электрическая цепь, содержащая в себе лампу накаливания и конденсатор. При разрядке конденсатора вспыхнет лампа — это будет означать, что энергия конденсатора превратилась в тепло и энергию света.
Чтобы вывести формулу энергии плоского конденсатора, нам понадобится формула энергии электростатического поля.
Энергия электростатического поля Wp = qEd Wp — энергия электростатического поля [Дж] q — электрический заряд [Кл] E — напряженность электрического поля [В/м] d — расстояние от заряда [м] |
В случае с конденсатором d будет представлять собой расстояние между пластинами.
Заряд на пластинах конденсатора равен по модулю, поэтому можно рассматривать напряженность поля, создаваемую только одной из пластин.
Напряженность поля одной пластины равна Е/2, где Е — напряженность поля в конденсаторе.
В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины.
Тогда энергия конденсатора равна:
Wp = qEd/2
Разность потенциалов между обкладками конденсатора можно представить, как произведение напряженности на расстояние:
U = Ed
Поэтому:
Wp = qU/2
Эта энергия равна работе, которую совершит электрическое поле при сближении пластин.
Заменив в формуле разность потенциалов или заряд с помощью выражения для электроемкости конденсатора C = q/U, получим три различных формулы энергии конденсатора:
Энергия конденсатора Wp = qU/2 Wp — энергия электростатического поля [Дж] q — электрический заряд [Кл] U — напряжение на конденсаторе [В] |
Энергия конденсатора Wp = q2/2C Wp — энергия электростатического поля [Дж] q — электрический заряд [Кл] C — электроемкость конденсатора [Ф] |
Энергия конденсатора Wp = CU2/2 Wp — энергия электростатического поля [Дж] C — электроемкость конденсатора [Ф] U — напряжение на конденсаторе [В] |
Эти формулы справедливы для любого конденсатора.
Применение конденсаторов
Конденсатор есть в каждом современном устройстве. Разберем два самых наглядных примера.
Пример раз — вспышка
Без конденсатора вспышка в фотоаппарате работала бы не так, как мы привыкли, а с большими задержками, и к тому же быстро разряжала бы аккумулятор. Конденсатор в этом случае работает как батарейка. Он накапливает заряд от аккумулятора и хранит его до востребования. Когда нам нужна вспышка, конденсатор разряжается, чтобы она сработала и вылетела птичка.
Пример два — тачскрин
Тачскрин на телефоне работает по принципу, схожему с конденсатором. В самом смартфоне, конечно, тоже есть множество конденсаторов, но этот принцип куда интереснее.
Дело в том, что тело человека тоже умеет проводить электричество — у него даже есть сопротивление и электроемкость. Так что можно считать человеческий палец пластиной конденсатора — тело же проводник, почему бы и нет. Но если поднести палец к металлической пластине, получится плохой конденсатор.
В экран телефона встроена матрица из микроскопических пластинок. Когда мы подносим палец к одной из них, получается своего рода конденсатор. Когда перемещаем палец ближе к другой пластинке — еще один конденсатор. Телефон постоянно проверяет пластинки, и если обнаруживает, что у какой-то из них внезапно изменилась электроемкость, значит, рядом есть палец. Координаты пластинки с изменившейся электроемкостью передаются операционной системе телефона, а она уже решает, что с этими координатами делать.
Кстати, то же самое можно проделать, если взять обычную сосиску и поводить ей по экрану смартфона. Тачскрин будет реагировать на все контакты, как реагирует на человеческий палец.
Это не единственный вариант реализации тачскрина, но один из лучших на сегодняшний день. В айфоне используется именно он.
Изучать физику на примерах из реальной жизни может быть очень даже интересно. Попробуйте и убедитесь сами на классическом курсе по физике для 10 класса.
8.1 Конденсаторы и емкость — Университетская физика, том 2
Цели обучения
К концу этого раздела вы сможете:
- Объяснить понятия конденсатора и его емкости
- Опишите, как оценить емкость системы проводников
Конденсатор — это устройство, используемое для хранения электрического заряда и электрической энергии. Конденсаторы обычно имеют два электрических проводника, разделенных расстоянием. (Обратите внимание, что такие электрические проводники иногда называют «электродами», но правильнее было бы назвать их «пластинами конденсатора».) Пространство между конденсаторами может быть просто вакуумом, и в этом случае конденсатор называется «вакуумный конденсатор». Однако это пространство обычно заполнено изоляционным материалом, известным как диэлектрик. (Вы узнаете больше о диэлектриках в разделах, посвященных диэлектрикам, далее в этой главе. ) Объем памяти в конденсаторе определяется свойством, называемым емкость , о которой вы узнаете подробнее чуть позже в этом разделе.
Применение конденсаторов варьируется от фильтрации статического электричества от радиоприема до накопления энергии в сердечных дефибрилляторах. Как правило, коммерческие конденсаторы имеют две проводящие части, расположенные близко друг к другу, но не соприкасающиеся, как показано на рис. 8.2. В большинстве случаев между двумя пластинами используется диэлектрик. Когда клеммы батареи подключены к изначально незаряженному конденсатору, потенциал батареи перемещает небольшое количество заряда величиной 9.0013 Q от положительной пластины к отрицательной. Конденсатор в целом остается нейтральным, но с зарядами +Q+Q и -Q-Q, расположенными на противоположных пластинах.
Рисунок
8.2
Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее. Теперь у них на пластинах есть заряды +Q+Q и −Q−Q (соответственно). (a) Конденсатор с плоскими пластинами состоит из двух пластин противоположного заряда площадью A , разделенных расстоянием d . (b) Скрученный конденсатор имеет диэлектрический материал между двумя проводящими листами (пластинами).
Система, состоящая из двух одинаковых пластин с параллельными проводниками, разделенных расстоянием, называется конденсатором с параллельными пластинами (рис. 8.3). Величина электрического поля в пространстве между параллельными пластинами равна E=σ/ε0E=σ/ε0, где σσ — поверхностная плотность заряда на одной пластине (напомним, что σσ — заряд Ом , приходящийся на площадь поверхности А). ). Таким образом, величина поля прямо пропорциональна Q .
Рисунок
8.3
Разделение зарядов в конденсаторе показывает, что заряды остаются на поверхности пластин конденсатора. Линии электрического поля в конденсаторе с плоскими пластинами начинаются с положительных зарядов и заканчиваются отрицательными зарядами. Величина электрического поля в пространстве между пластинами прямо пропорциональна количеству заряда на конденсаторе.
Конденсаторы с разными физическими характеристиками (такими как форма и размер их пластин) сохраняют разное количество заряда при одном и том же приложенном на их пластинах напряжении В . Емкость C конденсатора определяется как отношение максимального заряда Q , который может храниться в конденсаторе, к приложенному напряжению В на его обкладках. Другими словами, емкость — это наибольшее количество заряда на вольт, которое может храниться на устройстве:
C=QV.C=QV.
8.1
Единицей измерения емкости в системе СИ является фарад (Ф), названный в честь Майкла Фарадея (1791–1867). Поскольку емкость — это заряд на единицу напряжения, один фарад равен одному кулону на один вольт, или
1F=1C1V. 1F=1C1V.
По определению, конденсатор емкостью 1,0 Ф способен накапливать 1,0 Кл заряда (очень большой заряд), когда разность потенциалов между его пластинами составляет всего 1,0 В. Таким образом, один фарад — это очень большая емкость. Типичные значения емкости находятся в диапазоне от пикофарад (1 пФ = 10–12 Ф) (1 пФ = 10–12 Ф) до миллифарад (1 мФ = 10–3 Ф) (1 мФ = 10–3 Ф), включая микрофарад (1 мкФ = 10–6 Ф1 мкФ = 10–10–3). 6Ф). Конденсаторы могут изготавливаться различных форм и размеров (рис. 8.4).
Рисунок
8.4
Это некоторые типичные конденсаторы, используемые в электронных устройствах. Размер конденсатора не обязательно связан со значением его емкости. (кредит: Windell Oskay)
Расчет емкости
Мы можем рассчитать емкость пары проводников с помощью следующего стандартного подхода.
Стратегия решения проблем
Расчет емкости
- Предположим, что конденсатор имеет заряд Q .
- Определите электрическое поле E→E→ между проводниками. Если в расположении проводников присутствует симметрия, вы можете использовать закон Гаусса для этого расчета.
- Найдите разность потенциалов между проводниками из
VB-VA=-∫ABE→·dl→, VB-VA=-∫ABE→·dl→,
8,2
где путь интегрирования ведет от одного проводника к другому. Тогда величина разности потенциалов равна V=|VB-VA|V=|VB-VA|.
- Зная В , получите емкость непосредственно из уравнения 8.1.
Чтобы показать, как работает эта процедура, мы рассчитаем емкости пластинчатых, сферических и цилиндрических конденсаторов. Во всех случаях мы предполагаем вакуумные конденсаторы (пустые конденсаторы) без диэлектрического вещества в пространстве между проводниками.
Конденсатор с параллельными пластинами
Конденсатор с плоскими пластинами (рис. 8.5) имеет две одинаковые проводящие пластины, каждая из которых имеет площадь поверхности A , разделенные расстоянием d . При напряжении В подается на конденсатор, он накапливает заряд Q , как показано на рисунке. Мы можем видеть, как его емкость может зависеть от A и d , рассматривая характеристики кулоновской силы. Мы знаем, что сила между зарядами увеличивается с увеличением заряда и уменьшается с расстоянием между ними. Следует ожидать, что чем больше пластины, тем больше заряда они могут хранить. Таким образом, C должно быть больше для большего значения A . Точно так же, чем ближе пластины друг к другу, тем сильнее притяжение к ним противоположных зарядов. Следовательно, C должен быть больше для меньшего d .
Рисунок
8,5
В конденсаторе с плоскими пластинами, пластины которого расположены на расстоянии d , каждая пластина имеет одинаковую площадь поверхности A .
Определим поверхностную плотность заряда σσ на пластинах как
σ=QA.σ=QA.
Из предыдущих глав мы знаем, что когда d мало, электрическое поле между пластинами достаточно однородно (без учета краевых эффектов) и что его величина определяется выражением
E=σε0,E=σε0,
, где константа ε0ε0 — диэлектрическая проницаемость свободного пространства, ε0=8,85×10−12F/м.ε0=8,85×10−12F/м. Единица СИ Ф/м эквивалентна C2/N·m2.C2/N·m2. Поскольку электрическое поле E→E→ между пластинами однородно, разность потенциалов между пластинами равна
V=Ed=σdε0=Qdε0A.V=Ed=σdε0=Qdε0A.
Следовательно, уравнение 8.1 дает емкость плоского конденсатора как
C=QV=QQd/ε0A=ε0Ad.C=QV=QQd/ε0A=ε0Ad.
8,3
Обратите внимание, что из этого уравнения емкость является функцией только геометрии и того, какой материал заполняет пространство между пластинами (в данном случае вакуум) этого конденсатора. На самом деле это верно не только для плоского конденсатора, но и для всех конденсаторов: Емкость не зависит от Q или V . При изменении заряда соответственно изменяется и потенциал, так что Q / V остается постоянным.
Пример
8.1
Емкость и заряд, хранящиеся в конденсаторе с параллельными пластинами
а) Какова емкость пустого плоского конденсатора с металлическими пластинами площадью 1,00 м21,00 м2, разделенными расстоянием 1,00 мм? б) Сколько заряда накопится в этом конденсаторе, если к нему приложить напряжение 3,00×103 В3,00×103 В?
Стратегия
Нахождение емкости C является прямым применением уравнения 8.3. Как только мы найдем C , мы сможем найти накопленный заряд, используя уравнение 8. 1.
Решение
- Ввод данных значений в уравнение 8.3 дает
C=ε0Ad=(8,85×10−12Fm)1,00m21,00×10−3m=8,85×10−9F=8,85nF.C=ε0Ad=(8,85×10−12Fm)1,00m21,00×10−3m= 8,85×10-9Ф=8,85нФ.
Это маленькое значение емкости указывает на то, насколько сложно сделать устройство с большой емкостью.
- Инвертирование уравнения 8.1 и ввод известных значений в это уравнение дает
Q=CV=(8,85×10-9Ф)(3,00×103В)=26,6мкКл. Q=CV=(8,85×10-9Ф)(3,00×103В)=26,6мкКл.
Значение
Этот заряд лишь немного больше, чем в типичных приложениях статического электричества. Поскольку воздух разрушается (становится проводящим) при напряженности электрического поля около 3,0 МВ/м, на этом конденсаторе больше не может накапливаться заряд при увеличении напряжения.
Пример
8.2
A 1-F Конденсатор с параллельными пластинами
Предположим, вы хотите построить конденсатор с плоскими пластинами емкостью 1,0 Ф. Какую площадь вы должны использовать для каждой пластины, если расстояние между пластинами составляет 1,0 мм?
Решение
Преобразуя уравнение 8.3, мы получаем
A=Cdε0=(1,0F)(1,0×10-3м)8,85×10-12F/м=1,1×108м2.A=Cdε0=(1,0F)(1,0×10-3м)8,85×10-12F/ м=1,1×108м2.
Каждая квадратная пластина должна иметь диаметр 10 км. Раньше было обычной шуткой просить студента пойти на склад лаборатории и попросить конденсатор с плоскими пластинами 1-Ф, пока обслуживающему персоналу не надоела эта шутка.
Проверьте свое понимание
8.1
Проверьте свое понимание Емкость плоского конденсатора равна 2,0 пФ. Если площадь каждой пластины 2,4 см22,4 см2, каково расстояние между пластинами?
Проверьте свое понимание
8.2
Проверьте свое понимание Убедитесь, что σ/Vσ/V и ε0/dε0/d имеют одинаковые физические единицы.
Сферический конденсатор
Сферический конденсатор представляет собой еще один набор проводников, емкость которых можно легко определить (рис. 8.6). Он состоит из двух концентрических проводящих сферических оболочек радиусами R1R1 (внутренняя оболочка) и R2R2 (внешняя оболочка). Оболочки получают равные и противоположные заряды +Q+Q и −Q−Q соответственно. Из-за симметрии электрическое поле между оболочками направлено радиально наружу. Мы можем получить величину поля, применив закон Гаусса к сферической поверхности Гаусса радиусом 9dr)=Q4πε0∫R1R2drr2=Q4πε0(1R1−1R2).
В этом уравнении разность потенциалов между пластинами равна V=-(V2-V1)=V1-V2V=-(V2-V1)=V1-V2. Подставим этот результат в уравнение 8.1, чтобы найти емкость сферического конденсатора:
C=QV=4πε0R1R2R2−R1.C=QV=4πε0R1R2R2−R1.
8,4
Рисунок
8,6
Сферический конденсатор состоит из двух концентрических проводящих сфер. Обратите внимание, что заряды проводника находятся на его поверхности.
Пример
8.3
Емкость изолированной сферы
Рассчитайте емкость одиночной изолированной проводящей сферы радиусом R1R1 и сравните ее с уравнением 8. 4 в пределе, когда R2→∞R2→∞.
Стратегия
Мы предполагаем, что заряд на сфере равен Q , и поэтому мы следуем четырем шагам, описанным ранее. Мы также предполагаем, что другой проводник представляет собой концентрическую полую сферу бесконечного радиуса.
Раствор
Снаружи изолированной проводящей сферы электрическое поле определяется уравнением 8.2. Величина разности потенциалов между поверхностью изолированной сферы и бесконечностью равна
9dr)=Q4πε0∫R1+∞drr2=14πε0QR1.
Следовательно, емкость изолированной сферы равна
C=QV=Q4πε0R1Q=4πε0R1.C=QV=Q4πε0R1Q=4πε0R1.
Значение
Тот же результат можно получить, взяв предел уравнения 8.4 при R2→∞R2→∞. Таким образом, отдельная изолированная сфера эквивалентна сферическому конденсатору, внешняя оболочка которого имеет бесконечно большой радиус.
Проверьте свое понимание
8.3
Проверьте свое понимание Радиус внешней сферы сферического конденсатора в пять раз больше радиуса его внутренней оболочки. Каковы размеры этого конденсатора, если его емкость 5,00 пФ?
Цилиндрический конденсатор
Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров (рис. 8.7). Внутренний цилиндр радиусом R1R1 может быть как оболочкой, так и сплошным телом. Внешний цилиндр представляет собой оболочку с внутренним радиусом R2R2. Предположим, что длина каждого цилиндра равна l и что избыточные заряды +Q+Q и −Q−Q располагаются на внутреннем и внешнем цилиндрах соответственно.
Рисунок
8,7
Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров. Здесь заряд на внешней поверхности внутреннего цилиндра положителен (обозначен ++), а заряд на внутренней поверхности внешнего цилиндра отрицателен (обозначен —). 9dr)=Q2πε0l∫R1R2drr=Q2πε0llnr|R1R2=Q2πε0llnR2R1.
Таким образом, емкость цилиндрического конденсатора равна
C=QV=2πε0lln(R2/R1).C=QV=2πε0lln(R2/R1).
8,6
Как и в других случаях, эта емкость зависит только от геометрии расположения проводников. Важным применением уравнения 8.6 является определение емкости на единицу длины коаксиального кабеля , который обычно используется для передачи изменяющихся во времени электрических сигналов. Коаксиальный кабель состоит из двух концентрических цилиндрических проводников, разделенных изоляционным материалом. (Здесь мы предполагаем вакуум между проводниками, но физика качественно почти такая же, когда пространство между проводниками заполнено диэлектриком.) Такая конфигурация экранирует электрический сигнал, распространяющийся по внутреннему проводнику, от паразитных электрических полей, внешних по отношению к проводнику. кабель. Ток течет в противоположных направлениях во внутреннем и внешнем проводниках, при этом внешний проводник обычно заземлен. Теперь из уравнения 8.6 емкость на единицу длины коаксиального кабеля равна
Cl=2πε0ln(R2/R1).Cl=2πε0ln(R2/R1).
В практических приложениях важно выбрать конкретные значения C / l . Этого можно добиться соответствующим выбором радиусов проводников и изоляционного материала между ними.
Проверьте свое понимание
8.4
Проверьте свои знания Когда цилиндрический конденсатор получает заряд 0,500 нКл, между цилиндрами измеряется разность потенциалов 20,0 В. а) Чему равна емкость этой системы? б) Чему равно отношение их радиусов, если длина цилиндров 1,0 м?
На рис. 8.4 показано несколько типов практических конденсаторов. Обычные конденсаторы часто изготавливают из двух небольших кусочков металлической фольги, разделенных двумя небольшими кусочками изоляции (см. рис. 8.2(b)). Металлическая фольга и изоляция покрыты защитным покрытием, а два металлических вывода используются для подключения фольги к внешней цепи. Некоторыми распространенными изоляционными материалами являются слюда, керамика, бумага и антипригарное покрытие Teflon™.
Другим популярным типом конденсатора является электролитический конденсатор. Он состоит из окисленного металла в токопроводящей пасте. Основным преимуществом электролитического конденсатора является его высокая емкость по сравнению с другими распространенными типами конденсаторов. Например, емкость алюминиевого электролитического конденсатора одного типа может достигать 1,0 Ф. Однако вы должны быть осторожны при использовании электролитического конденсатора в цепи, потому что он работает правильно только тогда, когда металлическая фольга находится под более высоким потенциалом, чем проводящая паста. Когда возникает обратная поляризация, электролитическое воздействие разрушает оксидную пленку. Конденсатор этого типа нельзя подключать к источнику переменного тока, потому что в половине случаев переменное напряжение будет иметь неправильную полярность, поскольку переменный ток меняет полярность (см. Цепи переменного тока в цепях переменного тока).
Переменный воздушный конденсатор (рис. 8.8) имеет два набора параллельных пластин. Один набор пластин закреплен (обозначен как «статор»), а другой набор пластин прикреплен к валу, который может вращаться (обозначен как «ротор»). Поворачивая вал, можно изменить площадь поперечного сечения в области нахлеста пластин; следовательно, емкость этой системы может быть настроена на желаемое значение. Конденсаторная настройка находит применение в любом типе радиопередачи и при приеме радиосигналов от электронных устройств. Каждый раз, когда вы настраиваете автомобильный радиоприемник на любимую станцию, подумайте о емкости.
Рисунок
8,8
В переменном воздушном конденсаторе емкость можно регулировать, изменяя эффективную площадь пластин. (кредит: модификация работы Робби Спроула)
Символы, показанные на рис. 8.9, представляют собой схемы различных типов конденсаторов. Обычно мы используем символ, показанный на рис. 8.9(а). Символ на рис. 8.9(c) обозначает конденсатор переменной емкости. Обратите внимание на сходство этих символов с симметрией плоского конденсатора. Электролитический конденсатор представлен символом в части рисунка 8.9.(б), где изогнутая пластина указывает на отрицательную клемму.
Рисунок
8,9
Это показывает три различных представления схемы конденсаторов. Символ в (а) является наиболее часто используемым. Символ в (b) представляет собой электролитический конденсатор. Символ в (c) представляет собой конденсатор переменной емкости.
Интересный прикладной пример модели конденсатора взят из клеточной биологии и касается электрического потенциала плазматической мембраны живой клетки (рис. 8.10). Клеточные мембраны отделяют клетки от их окружения, но позволяют некоторым избранным ионам проходить внутрь или наружу клетки. Разность потенциалов на мембране составляет около 70 мВ. Клеточная мембрана может иметь толщину от 7 до 10 нм. Рассматривая клеточную мембрану как наноразмерный конденсатор, оценка наименьшей напряженности электрического поля на ее «пластинах» дает значение E=Vd=70×10−3V10×10−9. m=7×106В/м>3МВ/мE=Vd=70×10−3В10×10−9m=7×106В/м>3МВ/м.
Эта величина электрического поля достаточно велика, чтобы создать электрическую искру в воздухе.
Рисунок
8.10
Полупроницаемая мембрана биологической клетки имеет разные концентрации ионов на внутренней поверхности, чем на внешней. Диффузия перемещает ионы K+K+ (калий) и Cl–Cl– (хлорид) в указанных направлениях до тех пор, пока кулоновская сила не остановит дальнейший перенос. Таким образом, внешняя поверхность мембраны приобретает положительный заряд, а ее внутренняя поверхность приобретает отрицательный заряд, создавая на мембране разность потенциалов. Мембрана в норме непроницаема для Na+ (ионов натрия).
Интерактивный
Посетите PhET Explorations: Capacitor Lab, чтобы узнать, как работает конденсатор. Измените размер пластин и добавьте диэлектрик, чтобы увидеть влияние на емкость. Измените напряжение и увидите заряды на пластинах. Наблюдайте за электрическим полем в конденсаторе. Измерьте напряжение и электрическое поле.
Конденсатор и емкость — формулы и уравнения
Следующие формулы и уравнения могут быть использованы для расчета емкости и соответствующих величин конденсаторов различной формы следующим образом.
Содержание
Емкость конденсатора:
Емкость – это количество заряда, накопленного в конденсаторе, на вольт потенциала между его пластинами. Емкость можно рассчитать, если известны заряд Q и напряжение V конденсатора:
C = Q/V
Заряд, накопленный в конденсаторе:
Если известны емкость C и напряжение V, то можно рассчитать заряд Q. по:
Q = C V
Напряжение конденсатора:
И вы можете рассчитать напряжение конденсатора, если известны две другие величины (Q и C):
В = Q/C
Где
- Q — это заряд между пластинами в
- Кл — емкость в фарадах
- В — разность потенциалов между пластинами в
кулонов
Вольт.
Реактивное сопротивление конденсатора:
Реактивное сопротивление – это сопротивление конденсатора переменному току, которое зависит от его частоты и измеряется в Омах, как сопротивление. Емкостное реактивное сопротивление рассчитывается по формуле:
Где
- X C — емкостное реактивное сопротивление
- F — применяемая частота
- C это емкость
Коэффициент добротности конденсатора:
Коэффициент добротности или добротность – это эффективность конденсатора с точки зрения потерь энергии, которая определяется по формуле:
QF = X C /ESR
Где
Коэффициент рассеяния конденсатора:
D-фактор или коэффициент рассеяния является обратным коэффициенту добротности, он показывает рассеивание мощности внутри конденсатора и определяется как:
DF = tan δ = ESR/X C
Где
- DF — коэффициент рассеяния
- δ — угол между емкостным реактивным сопротивлением победителя и отрицательной осью.
- X C — емкостное реактивное сопротивление
- ESR — эквивалентное последовательное сопротивление цепи.
Похожие сообщения:
- Емкость и индуктивность из калькулятора реактивного сопротивления
- Почему ток увеличивается при увеличении емкости или уменьшении емкостного реактивного сопротивления?
Энергия, запасенная в конденсаторе:
Энергия E, запасенная в конденсаторе, определяется по формуле:
E = ½ CV 2
Где
- E – энергия в джоулях
- Кл — емкость в фарадах
- В это напряжение в вольтах
Average Power of Capacitor
The Average power of the capacitor is given by:
P av = CV 2 / 2t
where
- t is the time in секунды.
Напряжение конденсатора во время зарядки/разрядки:
Когда конденсатор заряжается через резистор R, для полного заряда требуется до 5 постоянных времени или 5 Тл. Напряжение в любой момент времени можно найти с помощью следующих формул зарядки и разрядки:
Во время зарядки:
Напряжение конденсатора в любой момент разрядки определяется по формуле:
Где
- В C напряжение на конденсаторе
- Vs — подаваемое напряжение
- t — время, прошедшее после подачи напряжения.
- RC = τ – постоянная времени цепи зарядки RC
.
Похожие сообщения:
- Что произойдет, если мы неправильно подключим полярный конденсатор?
- Какова роль конденсатора в потолочном вентиляторе?
Формулы емкости
Емкость между двумя проводящими пластинами с диэлектриком между ними можно рассчитать по формуле:
Где
- k — диэлектрическая проницаемость
- ε d – диэлектрическая проницаемость диэлектрика
- ε 0 — диэлектрическая проницаемость пространства, равная 8,854 x 10 -12 Ф/м
- А — площадь пластин
- d — расстояние между пластинами
Емкость пластинчатого конденсатора Формула
Где:
- C — емкость в фарадах
- А площадь площадки
- n — количество пластин
- d — расстояние между пластинами
- ε r — относительная проницаемость вещества между пластинами
- ε o абсолютная диэлектрическая проницаемость
Собственная емкость катушки (формула Медхерста)
C 2 ≈ (0,256479 ч 2 + 1,57292 r 2 ) pF
Где:
- h 2 и r 2 в дюймах
Формула собственной емкости сферы
C 2b ≈ 4πε o r
Где:
6 90 радиус сферы
Собственная емкость тороидального индуктора Формула
Где:
- r – малый радиус
- R — большой радиус
Закон Ома для конденсатора:
Q = CV
Дифференцируя уравнение, получаем:
где
- i — мгновенный ток через конденсатор
- Кл — емкость конденсатора
- Dv/dt — мгновенная скорость изменения приложенного напряжения.