Арматура для плитного фундамента: Армирование монолитной плиты фундамента: укладка, схема, расчет 

Армирование монолитной плиты фундамента: укладка, схема, расчет 

Содержание статьи

  • 1 Зачем необходимо армирование
  • 2 Схема армирования
    • 2.1 Основная ширина плиты
    • 2.2 Зоны продавливания
    • 2.3 Выбор арматуры
  • 3 Способы изготовления сеток и каркасов
  • 4 Укладка арматуры
  • 5 Расчет диаметра арматуры
    • 5.1 Пример расчета

Все чаще в качестве фундамента используются монолитные железобетонные плиты. Они позволяют обеспечить надежную опору для зданий при высоких нагрузках и плохих характеристиках грунта. Также монолитный фундамент сможет решить проблему высокого уровня грунтовых вод.

Зачем необходимо армирование

Бетон — это материал, который хорошо справляется с работой на сжатие, но имеет очень небольшую прочность при изгибе или растяжении. При строительстве дома на бетонной плите, нагрузки по ней распределены неравномерно, что приводит к появлению изгибающего момента.

Это очень опасно для бетонной конструкции, но исключить негативное влияние возможно с помощью установки арматурных сеток или каркасов. Бетон берет на себя сжимающие нагрузки, а арматура воспринимает изгибающие. Это позволяет обеспечить максимальную надежность.

Схема армирования

Пример схемы (чертежа) армирования плитного фундамента.

Армирование железобетонной плиты производится неравномерно: в местах опирания стен или колонн необходимо дополнительное усиление. Такие участки называются зоны продавливания. Укладка арматуры производится в один слой при толщине плиты 150 мм и менее. При величине более 150 мм армирование выполняют каркасами. В качестве примера необходимо рассмотреть основные узлы конструкции.

Основная ширина плиты

Здесь схема представляет собой сетки с постоянным размером ячейки. Шаг прутьев в обоих направлениях должен быть одинаковым. В зависимости от расчетной нагрузки его принимают в пределах 200-400 мм. Для кирпичных домов подойдет шаг арматуры 200 мм, для более легких каркасных можно укладывать стержни реже. При этом важно учитывать, что по СП «Бетонные и железобетонные конструкции» расстояние между стержнями не должно превышать толщину плиты более чем в 1,5 раза.

Схема армирования плиты.

Чаще всего стержни укладывают в два ряда: верхний и нижний. Их совместная работа обеспечивается установкой вертикальных стержней. Шаг таких прутов может быть равен шагу основного армирования или приниматься в два раза больше.

С торцов плита армируется П-образными хомутами.

Согласно СП 63.13330.2012 (п. 10.4.9) на торцах плита должна армироваться П-образными стержнями арматуры, длина этих стержней должна быть равна 2-м толщинам плиты или больше. Стержни связывают верхний и нижний ряды армирования и обеспечивают восприятие крутящих моментов у края плиты и анкеровку концов продольной арматуры.

Внимание! Арматура должна быть утоплена в бетон на 20-30 мм со всех сторон: снизу, сверху, с торцов. Иначе возможна ускоренная коррозия арматуры и разрушение конструкции.

Зоны продавливания

В местах опирания несущих вертикальных конструкций раскладка меняется — уменьшают шаг армирования. Например, если по основной ширине плиты стержни укладывались через 200 мм, то под стенами рекомендуется использовать шаг 100 мм. Это позволит избежать чрезмерного продавливания и появления трещин.

Зона сопряжения с монолитной стеной подвала

Конструкция плиты позволяет изготавливать ее на одном уровне с поверхностью земли, но если в здании планируется обустройство подвала ее глубина заложения будет зависеть от высоты помещения. В этом случае необходимо обеспечить совместную работу основания и стен.

Выпуски арматуры в плите для сопряжения с монолитными стенами.

Чтобы правильно армировать фундамент, необходимо связать вместе каркасы монолитной стены и плиты. При заливке фундамента оставляют выпуски в виде вертикальных стержней, именно они будут связующим звеном. Концы выпусков запускают в тело плиты (загибают на конце на 2 высоты плиты и вяжут к основному каркасу).

Для удобства и точного расчета материалов выполняют чертеж, на котором показана схема армирования, включающая данные о расстоянии между стержнями и их диаметрах.

Выбор арматуры

При изготовлении стальной арматуры руководствуются ГОСТ 5781-82*.  Для железобетонной монолитной плиты применяют стержни класса A400 и А500 (или в устаревшем варианте Alll). Чтобы не ошибиться необходимо знать, как отличить пруты разных классов визуально:

  • A240 (Al) имеет гладкую поверхность;
  • A300 (All) характеризуется периодическим профилем с кольцевым узором;
  • A400, А500 (Alll), та которая необходима, имеет периодический профиль, образующий «елочку»(серповидный).

Арматура А500 изготавливается по ГОСТ 52544-06.

Важно! Применение арматуры более низких классов не допускается.

Рекомендуем: Какая арматура нужна для фундамента.

Способы изготовления сеток и каркасов

Сетки изготавливаются по ГОСТ 23279-2012. Вариантов соединения стержней между собой существует всего два: вязание и сварка.

При первом используется тонкая проволока диаметром 2-3 мм, которая вручную или с помощью специальных приспособлений обматывается вокруг прутов. Вариант достаточно трудоемкий, но обеспечивает большую надежность соединений, поскольку позволяет стержням приспосабливаться к небольшим подвижкам конструкции.

Вертикальные хомуты можно изготовить как на фото ниже:

Паук из арматуры диаметром 8-10 мм.

Готовые сварные сетки обеспечат высокую скорость работ. Но количество их типоразмеров ограничено, и не всегда можно подобрать необходимую. Если же принято решение применять сварку прямо на стройплощадке, в особо ответственных местах (углы здания, участки опирания массивных стен) арматуру соединяют проволокой.

Шаблон поможет при вязке арматуры.

Укладка арматуры

Нахлест продольных стержней не менее 40 диаметров рабочей арматуры.

При укладке со всех сторон обеспечивают стержням защитный слой из бетона 20-30 мм. Это необходимо для предотвращения коррозии и разрушения. Чтобы соблюсти необходимое расстояние применяют пластиковые фиксаторы, «лягушки» или «стульчики» из металла.

Специальный пластиковый стакан обеспечивает защитный слой.

Если длины прута не хватает на всю ширину фундамента, соединение двух деталей производят с нахлестом не менее 40 диаметров рабочих стержней. Например, для арматуры 12 мм длина нахлеста будет равняться 40*12 мм = 480 мм.

Расчет диаметра арматуры

Расчеты, связанные с монолитной плитой, достаточно сложны и требуют особых знаний. Далеко не каждый конструктор может их правильно выполнить. Для индивидуального строительства можно руководствоваться минимальными значениями, принимаемыми по пособию «Армирование элементов монолитных железобетонных зданий».

Требования для монолитной плиты представлены в приложении 1, раздел 1. Общая площадь сечения рабочей арматуры в одном направлении принимается не менее 0,3% от общего сечения фундамента. Минимальный диаметр стержней назначается 10 мм при стороне плиты менее 3 м и 12 мм при большей длине стороны. Диаметр вертикальных стержней должен составлять не менее 6 мм, но также необходимо учитывать условия свариваемости. Максимальный размер рабочего армирования 40 мм, на практике чаще используют 12, 14 и 16 мм.

Пример расчета

В качестве исходных данных имеется железобетонная плита 6 на 6 м. Толщина для частного дома принимается 200 мм. Необходимо правильно армировать конструкцию. В примере не рассмотрено усиление железобетона на участках опирания стен.

Определение диаметров

В первую очередь определяется, что сетки будут укладываться в два ряда, поскольку толщина конструкции больше 150 мм. Далее производится расчет требуемой площади стальных прутьев.

  • Площадь поперечного сечения фундамента = 6 м * 0,2 м = 1,2 м²;
  • Минимальная площадь всей арматуры = 1,2 м² * 0,3% = 0,0036 м² = 36 см²;
  • Минимальная площадь арматуры в одном направлении для одного ряда = 36 см²/2 = 18 см².

Далее необходимо воспользоваться сортаментом арматурных стержней, который приведен в ГОСТ 5781-82*. В этом документе приведена площадь сечения одного прута. Для удобства можно найти расширенную версию сортамента. По нему определяется, что для данного сечения в одной сетке необходимо использовать один из следующих вариантов:

  • 16 стержней диаметром 12 мм;
  • 12 стержней диаметром 14 мм;
  • 9 стержней диаметром 16 мм;
  • 8 стержней диаметром 18 мм;
  • 6 стержней диаметром 20 мм.

Выбираем вариант с двенадцатым диаметром. Чтобы правильно разложить элементы необходима схема. Чертеж поможет рассчитать шаг прутов. Для стороны длинной 6 м шаг 16-ти стержней получается примерно 400 мм. Назначаем максимальное расстояние 300 мм исходя из условия СП 63.13330.2012 п.10.3.8.

Вертикальное армирование для надежности принимается 8 мм с шагом 300 мм.

Расчет количества

Недавно у нас появился калькулятор плитного фундамента, для удобства можете воспользоваться им.

Для того, чтобы не ошибиться при закупке материалов, необходимо заранее рассчитать их количество. Если имеется схема плиты, сделать это не сложно. При вычислении длин стержней необходимо учитывать толщину защитного слоя бетона 20-30 мм с каждой стороны.

Расчет рабочего армирования.

  • Длина одного стержня = 6000 — 30*2 = 5940 мм;
  • Количество стержней в одном направлении = 5940/300 = 19,8, принимаем 20 шт;
  • Количество стержней в обоих направлениях для верхней и нижней сетки = 20*2*2 = 80 шт;
  • Длина одного стержня для П-образных хомутов = 200 мм + (200 мм * 2)*2 = 1 м;
  • Количество стержней для П-образных хомутов = 20*2 = 40 шт;
  • Общая длина арматуры диаметром 12 мм = 80*5,94 м +40*1 м  = 515,2 м;
  • Масса стержней диаметром 12 мм = 515,2*0,888 кг (находится по сортаменту) = 457,5 кг.

Расчет вертикального армирования.

  • Длина одного стержня = 200 — 20*2 = 140 мм;
  • Количество стержней = кол-во  горизонтальных прутов в одном направлении*кол-во прутов в другом = 20*20 = 400 шт;
  • Общая длина стержней диаметром 8 мм = 400*0,14 = 56 м;
  • Масса стержней диаметром 8 мм = 56*0,395 = 22,12 кг.

Все получившиеся значения удобно свести в таблицу.

Диаметр Длина Масса
12 мм 515,2 м 457,5 кг
8 мм 56 м 22,12 кг

При расчете расходов стоит учитывать стандартную длину одного прута – 11,7 м, это означает, что, например, стержней 8 диаметра понадобится 5-6 штук с небольшим запасом. А при большой длине рабочей арматуры требуется увеличить суммарную длину на 10-15% для соединения стержней внахлест.

Грамотный выбор диаметра, шага и соблюдение технологии монтажа обеспечат надежность и долговечность фундамента при минимально возможных затратах.

Рекомендуем: Технология строительства плитного фундамента.

Армирование фундаментной плиты: чертеж и порядок укладки

Армирование плитного фундамента – один из важнейших этапов строительства.

Армирование фундаментной плиты, выполненное в строгом соответствии со СНиП и другими требованиям технологического процесса, обеспечивает высокую прочность и надежность основания постройки. Фундаментная плита – монолитная конструкция, отличающаяся высоким уровнем устойчивости к различного рода нагрузкам. Сооружение данной конструкции позволяет равномерно распределить эти нагрузки по всему основанию строения. Одно из главных преимуществ данной конструкции – точное распределение поперечного напряжения.

Содержание

  • Особенности конструкции
  • Армирование
  • Особенности вязки и заливки

Особенности конструкции

Фундаментная плита сооружается на пучинистых грунтах, которые отличаются высоким содержанием глины, суглинков, песчаных прослоек. Такое основание не только выгодно с экономической точки зрения, но и надежно. Для создания плитного фундамента необходимо не только подготовить площадку в соответствии с проектом и выполненной разметкой. Нужно сделать качественную гидроизоляцию и выполнить армирование прутами, сечение которых подбирают в соответствии с особенностями строения.

Армирование плитного фундамента осуществляется стержнями, диаметр которых составляет от 14 до 16 мм. Вяжут арматуру исключительно стальной проволокой.

От выполнения сварочных работ в ходе армирования монолитной плиты фундамента необходимо отказаться, так как места сварных швов подвержены коррозии. Выбор арматуры для плитного фундамента основан на особенностях грунта, данных о массе будущей постройки, нагрузках, которые предстоит выдержать основанию. Чертеж, в соответствии с которым и будут проводиться работы, делается и изучается еще на стадии разработки проекта.

Для создания арматурного каркаса монолитной фундаментной плиты используют стержни из закаленной стали, оснащенные специальными ребрами. Это обеспечивает высокий уровень надежности сооружения и качественное сцепление с бетоном. Сетка каркаса представляет собой двухуровневую конструкцию, надежность которой гарантируют вертикальные перемычки (утки), сделанные из гладких арматурных прутов, сечение которых составляет 12 мм.

Прежде чем приобрести арматуру для плитного фундамента необходимо выполнить расчет количества стержней, требуемого для создания сетки поперечной и продольной укладки:

  1. Шаг укладки – 20 см.
  2. Ширина плиты – 7 м 20 см.
  3. Количество прутов – 720 : 20 = 36 шт.
  4. Шаг укладки – 20 см.
  5. Длина основания – 9 м 80 см.
  6. Количество прутов – 980 : 20 = 49 шт.

Размер ячейки армирующей сетки – 15х15 см, но при необходимости обеспечить обход коммуникаций этот размер увеличивают, и шаг между прутами составляет 20 см.

Расчет верен при использовании стержней для армировки длиной 720 см и 920 см.

Армирование

Схема армирования монолитной плиты довольно проста. Каркас состоит из двух горизонтальных сеток, связанных между собой вертикальными перемычками, обеспечивающими постоянную высоту конструкции. Плитный фундамент – это монолитная железобетонная конструкция, для прочности которой и необходимо создание качественного арматурного каркаса. Он в свою очередь состоит из двух сеток, укладываться которые должны так, чтобы расстояние между нижней и слоем гидроизоляционного материала было не менее 50 мм.

После того как будут уложены продольные пруты нижней сетки, приступают к укладке поперечных стержней, строго соблюдая установленные параметры шага между ними. Надежную фиксацию обеспечивает правильно выполненная вязка арматуры.

Фундаментная плита заливается только после того, как будет завершен монтаж арматурного каркаса, так как работы с бетоном выполняются в один прием. По отдельным небольшим частям монолитную плиту заливать нельзя.

Согласно СНиП и ГОСТ арматурный каркас должен быть утоплен в плиту основания не менее, чем на 5 см, поэтому при монтаже каркаса арматурные пруты режут на 100 мм короче установленных длины и ширины плитного основания.

Особенности вязки и заливки

Обустроив песчаную подушку, закрыв ее гидроизоляционным материалом, на его поверхности раскладывают продольные пруты, отступив 10 см от отмеченного края основания. После завершения продольной раскладки поверх прутов укладывают поперечные стержни, строго соблюдая величину шага и контролируя размер создаваемых ячеек.

Вязать арматуру нужно стальной проволокой, воспользовавшись специальным приспособлением или делая это вручную. Завершив вязку можно приступать к установке специальных подпоров, обеспечивающих нужное расстояние между слоем гидроизоляции и первой сеткой каркаса. Теперь гнут гладкие арматурные пруты, придавая им сначала форму литеры «П», а потом свободные концы загибают, в разном направлении.

Таким образом, при создании упора нагрузка на подпорку будет распределяться равномерно.

Расстояние между вертикальными подпорками не превышает 50 см, а для дополнительной жесткости и неподвижности каркаса его оснащают так называемыми ребрами жесткости. Это арматурные пруты, внедренные в грунт по всему периметру основания и в его середине, чтобы обеспечить сопротивляемость вспучиванию.

Приступая к заливке плотного фундамента, стоит позаботиться о том, чтобы все необходимые работы были выполнены в один день. Прерывать процесс заливки категорически запрещено. Одновременно с заливкой осуществляют и трамбовку, добиваясь протекания раствора под нижнюю сетку каркаса. Между порциями заливки может быть временной интервал, не превышающий 2 часов.

Армирование для плит на земле | Concrete Construction Magazine

Существует множество мнений относительно преимуществ или недостатков армирования плит на грунте. Не все армирование работает одинаково. Чтобы иметь возможность понять потенциальные преимущества и недостатки любой конкретной системы подкрепления, нужно понимать, как эта система работает теоретически, а также то, что происходит в реальном мире. Цель этой статьи — обсудить некоторые из этих систем подкрепления, а также то, что они будут делать, а что нет.

Стальная арматура и арматура из сварной проволоки

Бетон очень прочен при сжатии, но очень слаб при растяжении. Хорошее эмпирическое правило заключается в том, что при сжатии он примерно в 10 раз прочнее, чем при прямом растяжении. Таким образом, всякий раз, когда вы видите трещину в плите на земле, это происходит из-за того, что к ней приложено большее растягивающее напряжение (от линейной усадки, ограничений до этой усадки, скручивания, нагрузок и т. д.), чем ее прочность на растяжение. Стальная арматура и сварная проволочная арматура очень прочны на растяжение, имеют характеристики теплового расширения и сжатия, аналогичные характеристикам бетона, и, таким образом, могут выдерживать высокие напряжения растяжения, в то время как бетон может выдерживать значительные напряжения сжатия.

Одна из важных концепций заключается в том, что обычно используемая арматура (исключением являются арматура после натяжения и компенсирующая усадку арматура бетона) не предотвратит растрескивание бетона. Причина этого в том, что арматура не может начать сопротивляться значительному растяжению до тех пор, пока бетон не растрескается. До этого момента он в основном неактивен внутри вашей плиты. Правильно подобранная и расположенная арматура будет удерживать трещины достаточно плотными и пригодными для использования, если они возникнут, но не предотвратит их. Кроме того, подавляющее большинство железобетонных конструкций, которые были рассмотрены для плит на грунте, не имеют достаточного армирования, чтобы фактически увеличить несущую способность плиты по сравнению с неармированной плитой. Таким образом, если армирование не используется для других целей (таких как концепция «длинного дюбеля/усиленной блокировки заполнителя», упомянутая далее в этой статье), обычно это довольно дорогая страховка от проблемы растрескивания, которая может никогда не возникнуть, если другие соответствующие процедуры следует, например, правильное расстояние между стыками, дюбели в стыках, постоянный контроль допусков по толщине плиты, хороший контроль основания и расчет смеси с низкой усадкой.

Многие люди считают, что плиты на земле обычно должны иметь некоторую арматуру, но большинство плит в Северной Америке изготовлены из неармированного бетона и хорошо работают. Если используется подкрепление, количество, которое следует использовать, зависит от того, что должно быть достигнуто. Процент армирования относится к площади поперечного сечения стали для данной ширины плиты, деленной на площадь поперечного сечения рассматриваемой площади плиты. Например, если плита толщиной 6 дюймов используется с арматурным стержнем № 3 с шагом 18 дюймов по центру, процент стали для плиты шириной 12 дюймов будет:

(0,11 дюйма2)(12 дюймов/18 дюймов)(100)/(6 дюймов) (12 дюймов) = 0,10% ACI) Комитет 360 «Проектирование плит на грунте» отметил, что конструкции, использующие 0,10% деформированной арматуры через деформационные швы, успешно используются. Количество армирования значительно меньше 0,10 % не обеспечивает надежной передачи нагрузки; и гораздо больше, чем это, вызвало чрезмерное растрескивание вне соединения. Эта деформированная арматура является альтернативой гладким стальным дюбелям, и эксперт по плитам Элдон Типпинг придумал термин «длинные дюбели» для этой концепции. При продолжении армирования через усадочный шов трещины, которые образуются под распилами, будут более плотными, чем они были бы в противном случае. Таким образом, армирование должно усилить сцепление заполнителя, на которое обычно нельзя полагаться при длительной передаче повторяющихся нагрузок, если трещина составляет от 0,025 до 0,035 дюйма или шире, согласно исследованию Portland Cement Association. Арматурные стержни № 3 с шагом 16 или 18 дюймов в центре являются наиболее распространенными схемами армирования, используемыми на плитах, построенных с помощью лазерной стяжки. Это связано с тем, что можно управлять бетоновозами и лазерной стяжкой по ним, когда они лежат на основании, а затем поднимать их прямо перед укладкой бетона, когда рабочие стоят между решетками. Как правило, арматуру располагают на расстоянии от трети до половины высоты плиты от верха, чтобы спил не перерезал арматуру. Доступность и использование пил с ранним входом сделали этот метод еще более надежным, потому что пропилы должны быть сделаны как можно скорее.

В некоторых ситуациях желательно исключить деформационные швы в больших местах и ​​использовать достаточно армирования, чтобы было много очень узких трещин, которые не раскалываются при движении колес и не представляют эстетической проблемы; типичным примером является истинное «суперплоское» размещение полосы плиты. Чтобы иметь такие характеристики, которые иногда называют «бесшовным» полом, в верхней части плиты необходимо использовать армирование от 0,50% до 0,60%. Эти трещины будут видны, поэтому эстетику этих трещин следует обсудить с владельцем. В большинстве крупных проектов для перехода на другой тип плиты потребуются некоторые конструкционные швы с дюбелями. Эти стыки обычно открываются больше, чем стыки с типичным расстоянием от 10 до 15 футов. Таким образом, если будет значительное движение колес, следует рассмотреть возможность использования очень хорошей системы дюбелей, например пластинчатых дюбелей, в строительном стыке и армировании стыка.

Для армирования 0,10% расстояние между швами плиты должно быть таким же, как и для неармированной плиты. Рекомендации по расстоянию между швами для минимизации растрескивания таких плит приведены в ACI 360 и, как правило, должны быть в диапазоне от 10 до 15 футов, указанном ранее. Следует проявлять особую осторожность, если принимается решение несколько увеличить расстояние между швами за счет увеличения армирования, но не до 0,50–0,60%, что соответствует требованиям для «бесшовных» полов. Основная причина дополнительной осторожности заключается в том, что скручивание значительно увеличивается с каждым увеличением расстояния между швами на 1 фут, что значительно увеличивает вероятность растрескивания вне швов неприемлемой ширины и проблем с швами.

Было высказано много мнений относительно наилучшего вертикального расположения одного слоя армирования плит на грунте.

Некоторые считают, что он должен быть в нижней части плиты из-за натяжения в нижней части плиты при приложении сосредоточенных нагрузок. Другие считают, что он должен быть посередине, чтобы обеспечить некоторое сопротивление растяжению при изгибном напряжении либо в верхней, либо в нижней части плиты. Однако лучше всего низ плиты сделать неармированным, а арматуру расположить в верхней части плиты.

Располагать арматуру в верхней части плиты лучше всего, если вы пытаетесь контролировать видимую ширину трещин из-за нагрузки, скручивания и трения основания. Скручивание плит создает значительное растягивающее напряжение в верхней части всех обычных бетонных плит; если трещины все же возникают, они имеют V-образную форму с самой широкой частью в верхней части плиты. Таким образом, чем выше арматура, тем плотнее она будет сдерживать любые трещины, идущие перпендикулярно направлению арматуры. Однако, если армирование слишком высокое, это может привести к пластическим усадочным трещинам, которые проходят прямо поверху и параллельно каждому стержню или проволоке. Таким образом, если стержни расположены на расстоянии 12 дюймов от центра и через каждые 12 дюймов наблюдаются относительно прямые трещины, то это тип растрескивания. Вероятность пластических усадочных трещин увеличивается при возникновении одного или нескольких из следующих факторов: увеличение диаметра армирования, уменьшение защитного слоя бетона, повышение температуры армирования, как правило, из-за солнечного света, увеличение скорости вытекания бетона, подвижность армирования, когда бетон все еще пластичен, или что-либо, что увеличивает влажность. скорость испарения с поверхности плиты, например, более высокая температура бетона или окружающей среды, более высокая скорость ветра или более низкая влажность.

Стальные волокна

Стальные волокна доступны в США с середины 1970-х годов. Волокна типа 1 изготавливаются из тянутой проволоки различной геометрии, а волокна типа 2 изготавливаются из листовой стали с прорезями. Как и в случае армирования стальным стержнем и проволокой, стальная фибра не предотвратит трещины, но может удерживать трещины, если они возникают, достаточно плотными, если используется достаточное количество фибры и соответствующее расстояние между стыками. Если имеется достаточное количество для конкретной ситуации — в зависимости от использования плиты, расстояния между швами, потенциальной усадки бетона и т. д. — способность стальной фибры выдерживать нагрузки после трещины может быть очень полезной. Однако, если трещины становятся достаточно широкими, чтобы расколоться, это может стать серьезной проблемой. Таким образом, как и в случае с другими типами армирования, дозировка волокна должна быть тщательно продумана в зависимости от конкретной ситуации.

Если стальная фибра должна использоваться для долговременного усиленного сцепления заполнителя, а расстояние между швами должно составлять от 10 до 15 футов, минимальное количество фибры, рассматриваемое для бетона с типичными свойствами усадки, составляет 40 фунтов на кубический ярд. Если ожидается, что бетон будет иметь высокую усадку, расстояние между швами должно быть в нижней части диапазона и/или дозировка фибры должна быть выше. Как и в случае армирования стальным стержнем или проволокой, необходимо соблюдать осторожность, если расстояние между стыками выходит за пределы этой спецификации. Для более длинных швов рекомендуется не менее 75 фунтов на кубический ярд.

Волокна уменьшают осадку бетона, но это можно компенсировать за счет правильного подбора материалов и пропорций. Как правило, те же самые вещества, которые составляют хорошую смесь без волокон, составят ее и с ними. При 40 фунтах на кубический ярд или более хороший понизитель воды среднего или высокого уровня (последний в низкой дозировке) может быть очень полезным и необходим по мере увеличения дозировки клетчатки.

  • 1
  • 2
  • Следующий

Укрепление слабого фундамента | JLC Онлайн

  • org/breadcrumb»>
    Главная >
  • Как >

  • Фонды >

  • Укрепление слабого фундамента
Фундаменты

Опубликовано:

Автор
Джейк Левандовски

Загрузите PDF-версию этой статьи. (3,12 МБ)

В своей статье «Частичная модернизация фундамента» (19 июня) я упомянул два места, требующие внимания в фундаменте этого клиента. В этой статье я сосредоточился на том, где существующий фундамент потерял всю структурную целостность и нуждался в полной замене. Здесь я обращаюсь ко второму месту, где инженер посчитал, что существующий фундамент, хотя и слабый, просто требует усиления.

Эта область существующего фундамента была слабой, но все же конструктивно прочной.

В ходе расследования команда обнаружила, что под первоначальным фундаментом не было опоры, и обратилась за решением к инженеру.

Решение заключалось в заливке того, что мы называем «уступной стеной», которая в основном представляет собой усиленную подпорную стену, залитую и привязанную к исходной фундаментной стене. Прежде чем начать, мы проверили место, где плита сломалась, и обнаружили, что под первоначальной стеной не было опоры. Ответ инженера состоял в том, чтобы раскопать под первоначальным фундаментом чередующиеся 2-футовые секции, поддерживая старую стену, позволяя новому бетонному основанию проникать в пустоты под стеной.

Бригада разрезала плиту и вырыла траншею для фундамента шириной 1 фут и глубиной 1 фут. Под стеной они вырыли пустоты шириной 2 фута на расстоянии 2 фута друг от друга, которые должны были быть заполнены бетоном как часть нового фундамента.

Специальный инструмент изгибает арматуру в нужные формы.

После заливки стены скамейки поверх нового фундамента мы построили плотно прилегающую стену 2х4 между балками пола и верхней частью бетона. Эта стена помогла выдержать нагрузку на внешнюю стену и нагрузку на пол, а также помогла только что залитой стене сопротивляться горизонтальному изгибу.

Арматура была необходима для привязки новой стены скамейки к существующему фундаменту. Член бригады начал с бурения отверстий в верхней части соседних стен фундамента.

Затем бригада использовала высокопрочную эпоксидную смолу, чтобы прикрепить два отрезка арматуры к одному концу стены. Короткие отрезки арматуры, просверленные и залитые эпоксидной смолой в стену фундамента, обеспечивают поддержку арматуры по всей ее длине.

Другой конец арматурного стержня был согнут и залит эпоксидной смолой в существующую стену. Концы вертикальных и горизонтальных отрезков были связаны вместе для заливки.

В траншее для фундамента отрезки арматуры были установлены на стульях, прикрепленных к основанию фундамента. На переднем плане видна одна из 2-футовых пустот, выкопанных под существующим фундаментом через каждые 2 фута.

Бетон для основания расширялся в пустоты под существующей стеной, чтобы поддерживать ее. Бригада замешивала и заливала бетон для основания из мешков, затирая поверхность для получения гладкой поверхности.

Шпоночный паз, отлитый в основание, помог зафиксировать стенку скамейки на месте, а лазерная линия использовалась для направления размещения формы.

Прикрепив фанеру формы к соседней стене, бригада построила раму для формы.

2×4, прикрепленный к плите, удерживал дно формы на месте.